精英家教网 > 高中数学 > 题目详情
12.方程(x-1)2+(y+2)2=9表示的图形是(  )
A.圆心为(-1,2),半径为3的圆B.圆心为(-1,2),半径为9的圆
C.圆心为(1,-2),半径为3的圆D.圆心为(1,-2),半径为9的圆

分析 利用圆的标准方程曲线圆心与半径即可.

解答 解:方程(x-1)2+(y+2)2=9表示的图形是:圆心为(1,-2),半径为3的圆.
故选:C.

点评 本题考查圆的方程的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.二次函数y=(x+2)2-1的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:
(1)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{{a}^{\frac{2}{3}}+2\root{3}{ab}+4{b}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)×$\root{3}{a}$;
(2)(x+$\frac{1}{x}$)2-[(x+$\frac{1}{x}$)-$\frac{1}{1-(\frac{1}{x}+x)}$]2÷$\frac{{x}^{2}+\frac{1}{{x}^{2}}-x-\frac{1}{x}+3}{{x}^{2}+\frac{1}{{x}^{2}}-2x+\frac{2}{x}+3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a满足方程x+1gx=4,b满足方程x+10x=4,函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+(a+b)x+2,x≤0}\\{2,x>0}\end{array}\right.$,则关于x的方程f(x)=x的解是-2,-1,2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.解集{x|x≤1}用区间表示为(  )
A.[-∞,1]B.(-∞,1]C.[1,+∞)D.[1,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知A(4,1),B(6,3),C(0,y0)为平面直角坐标系中的三个不同点.
(1)若|CA|=|CB|,求y0的值;
(2)若AC⊥AB,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在平面直角坐标系xOy中,∠CAB=60°,AC=4,BC=2$\sqrt{7}$
(Ⅰ)求△ABC的面积;
(Ⅱ)若函数f(x)=Msin(ωx+φ)(M>0,ω>0),|φ|<$\frac{π}{2}$的图象经过
A、C、B三点,且A、B为f(x)的图象与x轴相邻的两个交点,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列转化结果错误的是(  )
A.67°30′化成弧度是$\frac{3}{8}$πB.-$\frac{10}{3}$π化成度是-600°
C.-150°化成弧度是$\frac{5}{6}$πD.$\frac{π}{12}$化成度是15°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“?x0∈R,3${\;}^{{x}_{0}}$+1≤$\frac{3}{2}$”的否定为(  )
A.?x0∈R,3${\;}^{{x}_{0}}$+1>$\frac{3}{2}$B.?x0∈R,3${\;}^{{x}_{0}}$+1≥$\frac{3}{2}$
C.?x∈R,3x+1>$\frac{3}{2}$D.?x∈R,3x+1<$\frac{3}{2}$

查看答案和解析>>

同步练习册答案