精英家教网 > 高中数学 > 题目详情
已知sin(α+
π
2
)=
1
3
,且α∈(0,
π
2
)
,则tanα=
2
2
2
2
分析:利用诱导公式化简已知等式左边求出cosα的值,再利用同角三角函数间的基本关系求出sinα的值,即可求出tanα的值.
解答:解:∵sin(α+
π
2
)=cosα=
1
3
,α∈(0,
π
2
),
∴sinα=
1-cos2α
=
2
2
3

则tanα=
sinα
cosα
=2
2

故答案为:2
2
点评:此题考查了同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin
θ
2
+cos
θ
2
=
2
3
3
,那么sinθ的值为
 
,cos2θ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
2
-x)=
3
3
,则cos2x
=
-
1
3
-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
2
-α)=
3
5
,则cos(π-α)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
2
+θ)=
3
5
,则cos(2θ-π)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知sin
α
2
+cos
α
2
=
3
3
,且cosα<0,那么tanα等于(  )

查看答案和解析>>

同步练习册答案