【题目】已知函数(其中)在点处的切线斜率为1.
(1)用表示;
(2)设,若对定义域内的恒成立,求实数的取值范围;
(3)在(2)的前提下,如果,证明: .
【答案】(1);(2);(III)证明见解析.
【解析】试题分析:(1)由题意即得;
(2)在定义域上恒成立,即,由恒成立,得,再证当时, 即可;
(3)由(2)知,且在单调递减;在单调递增,当时,不妨设,要证明,等价于,需要证明,令,可证得在上单调递增, 即可证得.
试题解析:
(1),由题意
(2)在定义域上恒成立,即。
解法一: 恒成立,则。
当时, ,
令得(注意)
所以时, 单调递减;当时, 单调递增。
所以,符合题意。
综上所述, 对定义域内的恒成立时,实数的取值范围是。
解法二:(分离变量)恒成立,分离变量可得
对恒成立,
令,则。
这里先证明,记,则,
易得在上单调递增,在上单调递减, ,所以。
因此, ,且时,
所以,实数的取值范围是。
(3)由(2)知,且在单调递减;在单调递增,
当时,不妨设,要证明,等价于,
只需要证明,这里,
令
,求导得
.
注意当时, , ,(可由基本不等式推出)又
因此可得,当且仅当时等号成立。
所以在上单调递增, ,也即,
因此,此时都在单调递增区间上,
所以,得
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,值域为,即,若,则称在上封闭.
(1)分别判断函数, 在上是否封闭,说明理由;
(2)函数的定义域为,且存在反函数,若函数在上封闭,且函数在上也封闭,求实数的取值范围;
(3)已知函数的定义域为,对任意,若,有恒成立,则称在上是单射,已知函数在上封闭且单射,并且满足 ,其中(),,证明:存在的真子集,
,使得在所有()上封闭.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是边长为的正方形,平面,,,与平面所成角为.
(Ⅰ)求证:平面.
(Ⅱ)求二面角的余弦值.
(Ⅲ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列满足:只要,必有,则称具有性质.
(1)若具有性质,且, ,求;
(2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列, , , 判断是否具有性质,并说明理由;
(3)设是无穷数列,已知.求证:“对任意都具有性质”的充要条件为“是常数列”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右有顶点分别是、,上顶点是,圆:的圆心到直线的距离是,且椭圆的右焦点与抛物线的焦点重合.
(Ⅰ)求椭圆的方程;
(Ⅱ)平行于轴的动直线与椭圆和圆在第一象限内的交点分别为、,直线、与轴的交点记为,.试判断是否为定值,若是,证明你的结论.若不是,举反例说明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(限定).
(1)写出曲线的极坐标方程,并求与交点的极坐标;
(2)射线与曲线与分别交于点(异于原点),求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com