精英家教网 > 高中数学 > 题目详情

分别是椭圆的左右焦点。

(Ⅰ)设椭圆上的点到两点距离之和等于,写出椭圆的方程和焦点坐标;

(Ⅱ)设是(1)中所得椭圆上的动点,求线段的中点的轨迹方程;

(Ⅲ)设点是椭圆上的任意一点,过原点的直线与椭圆相交于两点,当直线 , 的斜率都存在,并记为 ,试探究的值是否与点及直线有关,不必证明你的结论。

(Ⅰ)椭圆C的方程为  

(Ⅱ) (Ⅲ)的值与点P的位置无关,同时与直线L无关


解析:

(Ⅰ)由于点在椭圆上, ……………………… 1分

2=4,                                            ………………………2分  

椭圆C的方程为                        ………………………3分

焦点坐标分别为               ………………………4分

(Ⅱ)设的中点为B(x, y)则点 ………………………5分

把K的坐标代入椭圆中得………7分

线段的中点B的轨迹方程为   ………………8分

(Ⅲ)过原点的直线L与椭圆相交的两点M,N关于坐标原点对称 

                  

在椭圆上,应满足椭圆方程,得  ……10分

          ………………11分

==       ………………13分

故:的值与点P的位置无关,同时与直线L无关,………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•徐州一模)如图,在平面直角坐标系xOy中,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距为2,且过点(
2
6
2
)

(1)求椭圆E的方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.
(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;
(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
1
2
,一条准线方程为x=4.
(1)求椭圆E的标准方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M,设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(-1,
3
2
)是椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(1)求椭圆E的方程;
(2)设A、B是椭圆E上两个动点,
PA
+
PB
PO
(0<λ<4,且λ≠2).求证:直线AB的斜率等于椭圆E的离心率;
(3)在(2)的条件下,当△PAB面积取得最大值时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(-1,
3
2
)是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上一点F1、F2分别是椭圆C的左、右焦点,O是坐标原点,PF1⊥x轴.
①求椭圆C的方程;
②设A、B是椭圆C上两个动点,满足:
PA
+
PB
PO
(0<λ<4,且λ≠2)求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设椭圆E:
x2
a2
+
y2
1-a2
=1
的焦点在x轴上
(1)若椭圆E的焦距为1,求椭圆E的方程;
(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.

查看答案和解析>>

同步练习册答案