精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中,E,F,G,分别是AB,BC,CC1的中点,求EF与BG所成角的余切值.
考点:异面直线及其所成的角
专题:空间角
分析:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出EF与BG所成角的余切值.
解答: 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
设正方体ABCD-A1B1C1D1的棱长为2,
则E(2,1,0),F(1,2,0),
B(2,2,0),G(0,2,1),
EF
=(-1,1,0),
BG
=(-2,0,1),
设EF与BG所成角为θ,
cosθ=
|
EF
BG
|
|
EF
|•|
BG
|
=
2
2
×
5
=
10
5

∴EF与BG所成角的余切值为
10
5
点评:本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,平面PAD⊥平面ABCD,∠ABC=∠BCD=90°,PA=PD=DC=CB=
1
2
AB,E是BP的中点.
(1)求证:PA⊥BD;
(2)求CE与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A类波”,把两个解析式相加称为波的叠加.
(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ21的值;
(2)在“A类波“中有一个是f1(x)=sinx,从 A类波中再找出两个不同的波(每两个波的初相φ都不同)使得这三个不同的波叠加之后是“平波”,即叠加后y=0,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△OAB中,点C是点B关于A的对称点,点D是线段OB的一个靠近B的三等分点,DC和OA交于E,设
AB
=a,
AO
=b
(1)用向量
a
b
表示向量
OC
CD

(2)若
OE
=λ
OA
,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC=2,E、F分别是AB、PB的中点.
(1)求证:PA⊥CD;
(2)求三棱锥B-DEF的体积;
(3)二面角E-DF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有二元关系f(x,y)=(x-y)2+a(x-y)-1,已知曲线Γ:f(x,y)=0
(1)若a=2时,正方形ABCD的四个顶点均在曲线上,求正方形ABCD的面积;
(2)设曲线C与x轴的交点是M、N,抛物线E:y=
1
2
x2+1与 y 轴的交点是G,直线MG与曲线E交于点P,直线NG 与曲线E交于Q,求证:直线PQ过定点(0,3).
(3)设曲线C与x轴的交点是M(u,0)、N(v,0),可知动点R(u,v)在某确定的曲线上运动,曲线与上述曲线C在a≠0时共有4个交点,其分别是:A(x1,|x2)、B(x3,x4)、C(x5,x6)、D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Yi=1,2,…,255),将Yi中的所有元素相加(若Yi中只有一个元素,则和是其自身)得到255个数y1、y2、…、y255,求y13+y23+…+y2553的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=-1,an+1=an+
1
n(n+1)
,n∈N*,写出前5项,并写出这个数列的一个通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn}各项均为正数,且对任意n∈N*,都有an,bn,a n+1成等差数列,bn,a n+1,b n+1成等比数列,且a1=10,a2=15,求证:{
bn
}为等差数列并求出{an},{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的两顶点A(3,7),B(-2,5),若AC的中点在y轴上,BC的中点在x轴上
(1)求点C的坐标;
(2)求AC边上的中线BD的长及直线BD的斜率.

查看答案和解析>>

同步练习册答案