精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,,平面平面.

(1)求证:平面

(2)求平面与平面夹角的余弦值,

【答案】(1)见解析;(2)

【解析】

1)结合题中数据在四边形中证得,由平面,得平面,所以,又,可得平面;(2)以坐标原点,分别以 在的直线为轴,在底面内点过点垂线为轴建立空间直角坐标系,写出各点坐标,分别求出平面与平面的法向量,然后计算其夹角,由二面角的平面角与法向量的关系得到答案.

解(1).

,根据勾股定理可知.

平面,且平面平面

平面..

平面.

(2)以坐标原点,分别以 在的直线为轴,在底面内点过点垂线为轴建立空间直角坐标系.

所以

设平面法向量为

平面一个法向量为

设平面法向量为

平面一个法向量为

由图易知平面与平面夹角为锐角

所以平面 平面成夹角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列中,,且对任意成等差数列,其公差为.

(1)若,求的值;

(2)若,证明成等比数列();

(3)若对任意成等比数列,其公比为,设,证明数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.

(1)求椭圆的方程;

(2)已知定点,是否存在过的直线,使与椭圆交于两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,侧面底面,底面为直角梯形,其中

O中点.

)求证:平面

)求锐二面角A—C1D1—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着教育信息化2.0时代的到来,依托网络进行线上培训越来越便捷,逐步成为实现全民终身学习的重要支撑.最近某高校继续教育学院采用线上和线下相结合的方式开展了一次300名学员参加的“国学经典诵读”专题培训.为了解参训学员对于线上培训、线下培训的满意程度,学院随机选取了50名学员,将他们分成两组,每组25人,分别对线上、线下两种培训进行满意度测评,根据学员的评分(满分100)绘制了如下茎叶图:

(1)根据茎叶图判断学员对于线上、线下哪种培训的满意度更高?并说明理由;

(2)50名学员满意度评分的中位数,并将评分不超过、超过分别视为基本满意”、“非常满意”两个等级.

(i)利用样本估计总体的思想,估算本次培训共有多少学员对线上培训非常满意?

(ii)根据茎叶图填写下面的列联表:

并根据列联表判断能否有99.5%的把握认为学员对两种培训方式的满意度有差异?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂要建造一个长方体无盖贮水池,其容积为,深3m.如果池底每平方米的造价为200元,池壁每平方米的造价为150元,怎样设计水池能使总造价最低?最低总造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件发生的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的线性回归方程;

(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,点在椭圆.

1)求椭圆方程;

2)设直线与椭圆交于两点,且直线的斜率之和为0.

①求证:直线经过定点,并求出定点坐标;

②求面积的最大值.

查看答案和解析>>

同步练习册答案