【题目】如图,四边形为矩形,,,为线段上的动点.
(1)若为线段的中点,求证:平面;
(2)若三棱锥的体积记为,四棱锥的体积记为,当时,求二面角的余弦值.
【答案】(1)证明见解析(2)
【解析】
(1)连接,,记它们的交点为,连接,利用中位线可得,再利用线面平行的判定定理可证.
(2)设,取中点,利用三棱锥的体积公式和,可得,再建立空间直角坐标系,利用向量可得二面角的余弦值.
(1)连接,,记它们的交点为,连接
因为四边形为矩形,∴为中点,
又为线段的中点,∴,
而平面,平面
∴平面.
(2)∵矩形,∴,
又,∴,,∴平面,
设,取中点,
因为是等边三角形,∴,
又因为平面,
∴,,∴平面,且,
设三棱锥的高为,则,∴,
由得,解得,
由题意,如图以点为坐标原点建立空间直角坐标系,则,,,
∵,∴,
易知平面的一个法向量为,
设平面的法向量为,
则
令则得平面的一个法向量,
因为二面角为锐角二面角,
所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三家企业产品的成本分别为10000,12000,15000,其成本构成如下图所示,则关于这三家企业下列说法错误的是( )
A.成本最大的企业是丙企业B.费用支出最高的企业是丙企业
C.支付工资最少的企业是乙企业D.材料成本最高的企业是丙企业
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,对于任意的,都有.
(1)求数列的首项及数列的递推关系式;
(2)若数列成等比数列,求常数的值,并求数列的通项公式;
(3)数列中是否存在三项、、,它们组成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥S﹣ABCD中,SA⊥底面ABCD,底面ABCD是平行四边形,E是线段SD上一点.
(1)若E是SD的中点,求证:SB∥平面ACE;
(2)若SA=AB=AD=2,SC=2,且DEDS,求二面角S﹣AC﹣E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】所谓声强,是指声音在传播途径上每1平方米面积上的声能流密度,用I表示,人类能听到的声强范围很广,其中能听见的1000Hz声音的声强(约10﹣12W/m2)为标准声强,记作I0,声强I与标准声强I0之比的常用对数称作声强的声强级,记作L,即L=lg,声强级L的单位名称为贝(尔),符号为B,取贝(尔)的十分之一作为响度的常用单位,称为分贝(尔).简称分贝(dB).《三国演义》中有张飞喝断当阳桥的故事,设张飞大喝一声的响度为140dB.一个士兵大喝一声的响度为90dB,如果一群士兵同时大喝一声相当一张飞大喝一声的响度,那么这群土兵的人数为( )
A.1万B.2万C.5万D.10万
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:过点(0,1)且离心率.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)设为曲线上的点,,垂足为,若的最小值为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为正整数,若两个项数都不小于的数列,满足:存在正数,当且时,都有,则称数列,是“接近的”.已知无穷等比数列满足,无穷数列的前项和为,,且,.
(1)求数列通项公式;
(2)求证:对任意正整数,数列,是“接近的”;
(3)给定正整数,数列,(其中)是“接近的”,求的最小值,并求出此时的(均用表示).(参考数据:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的通项公式为,其中,、.
(1)试写出一组、的值,使得数列中的各项均为正数.
(2)若,,数列满足,且对任意的(),均有,写出所有满足条件的的值.
(3)若,数列满足,其前项和为,且使(、,)的和有且仅有组,、、…、中有至少个连续项的值相等,其它项的值均不相等,求、的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com