精英家教网 > 高中数学 > 题目详情

【题目】世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:

每周累积户外暴露时间(单位:小时)

不少于28小时

近视人数

21

39

37

2

1

不近视人数

3

37

52

5

3

(1)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;

(2)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(2)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?

近视

不近视

足够的户外暴露时间

不足够的户外暴露时间

附:

P

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(1) (2)见解析

【解析】

(1)根据题意,时间不少于28小时的4名学生中,近视1名,不近视3名,所以恰好一名近视:,4名学生抽2名共有:,然后求得其概率.

(2)先根据表格得出在户外的时间与近视的人数分别是多少,完成列联表,然后根据公式求得

的观测值,得出结果.

(1)设“随机抽取2名,其中恰有一名学生不近视”为事件,则

故随机抽取2名,其中恰有一名学生不近视的概率为.

(2)根据以上数据得到列联表:

近视

不近视

足够的户外暴露时间

40

60

不足够的户外暴露时间

60

40

所以的观测值

故能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将具有如下性质的3×3方格表称为“T-网格”:

(1)五个格填1,四个格填0;

(2)三行、三列以及两条对角线共八条线上至多有一条,其中三个数两两相等。

则不同的T-网格共有________个。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了增强学生的记忆力和辨识力,组织了一场类似《最强大脑》的PK赛,两队各由4名选手组成,每局两队各派一名选手PK,比赛四局.除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0.假设每局比赛A队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时A队的得分高于B队的得分的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 2022年北京冬奥会的申办成功与“3亿人上冰雪口号的提出,将冰雪这个冷项目迅速炒.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣.

(1)完成下面的列联表,并回答能否在犯错误的概率不超过0.1的前提下认为对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列期望和方差.

附表:

0.150

0.100

0.050

0.025

0.010

2.072/p>

2.706

3.841

5.024

6.635

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设n为一个正整数,三维空间内的点集S满足下述性质:

(1).空间内不存在n个平面,使得点集S中的每个点至少在这n个平面中的一个平面上;

(2).对于每个点,均存在n个平面,使得中的每个点均至少在这n个平面中的一个平面上.

求点集S中点的个数的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,已知的有中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重的疾病,新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株,某小区为进一步做好新型冠状病毒肺炎疫情知识的教育,在小区内开展新型冠状病毒防疫安全公益课在线学习,在此之后组织了新型冠状病毒防疫安全知识竞赛在线活动.已知进入决赛的分别是甲、乙、丙、丁四位业主,决赛后四位业主相应的名次为第1234名,该小区为了提高业主们的参与度和重视度,邀请小区内的所有业主在比赛结束前对四位业主的名次进行预测,若预测完全正确将会获得礼品,现用abcd表示某业主对甲、乙、丙、丁四位业主的名次做出一种等可能的预测排列,记X|a1|+|b2|+|c3|+|d4|

1)求该业主获得礼品的概率;

2)求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,为椭圆的上焦点,上一点轴上方,且.

(1)求直线的方程;

(2)为直线异于的交点,的弦的中点分别为,若在同一直线上,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+lnx.

(1)求函数f(x)的单调区间;

(2)求证:当x>1时, x2+lnx<x3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为测量坡高MN,选择A和另一个山坡的坡顶C为测量观测点.从A点测得M点的仰角∠MAN=60°C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知坡高BC=50米,则坡高MN=______米.

查看答案和解析>>

同步练习册答案