精英家教网 > 高中数学 > 题目详情
1.若指数函数y=(2a+1)x在R上是增函数,实数a的取值范围是(0,+∞).

分析 根据指数函数的定义以及性质得到关于a的不等式,解出即可.

解答 解:若指数函数y=(2a+1)x在R上是增函数,
则2a+1>1,解得:a>0,
故答案为:(0,+∞).

点评 本题考查了指数函数的定义以及性质,考查不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知△ABC中,|AC|=1,∠ABC=$\frac{2π}{3}$,∠BAC=θ,记f(θ)=$\overrightarrow{AB}$•$\overrightarrow{BC}$.
(1)求f(θ)关于θ的表达式;
(2)求f(θ)的值域及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若复数z=(a2-a)-ai为纯虚数,则实数a等于(  )
A.0B.1C.-1D.0或1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△AnBnCn中,记角An、Bn、Cn所对的边分别为an、bn、cn,且这三角形的三边长是公差为1的等差数列,若最小边an=n+1,则$\underset{lim}{n→∞}$Cn=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C的对边分别为a,b,c,且3(sin2B+sin2C-sin2A)=2$\sqrt{3}$sinBsinC.
(1)求tanA;
(2)若△ABC的面积为$\sqrt{6}$+$\sqrt{2}$,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A={x|y=$\sqrt{x-a}$},B={y|y=log${\;}_{\frac{1}{2}}$x,0<x≤$\frac{1}{4}$},且A=B,则a=(  )
A.1B.2C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若$|\overrightarrow a|=|\overrightarrow b|=1$,$|3\overrightarrow a-2\overrightarrow b|=3$,则$|3\overrightarrow a+\overrightarrow b|$=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.欧拉公式eix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占用非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e2i表示的复数在复平面中位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若cosα=-$\frac{{\sqrt{3}}}{3}$,sin2α>0,则tanα的值为(  )
A.-$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.-$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案