精英家教网 > 高中数学 > 题目详情

【题目】已知 ,且
(1)当 时,解不等式
(2) 恒成立,求实数 的取值范围.

【答案】
(1)解:当 时,解不等式 ,得

故不等式的解集为


(2)解:由 恒成立,得 恒成立,

①当 时,有 ,得

②当 时,有 ,得

故实数 的取值范围


【解析】(1)根据题意当m=2时可得到 3 < log2 x < 1利用对数的单调性可得出不等式的解集。(2)由f ( x ) < 0 在 [ 2 , 4 ] 恒成立得到 3 < logm x < 1 在 [ 2 , 4 ] 恒成立,分情况讨论分别解出m的取值范围然后并起来即可得到m的取值范围。
【考点精析】本题主要考查了对数的运算性质的相关知识点,需要掌握①加法:②减法:③数乘:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy内,动点P到定点F(﹣1,0)的距离与P到定直线x=﹣4的距离之比为
(1)求动点P的轨迹C的方程;
(2)设点A、B是轨迹C上两个动点,直线OA、OB与轨迹C的另一交点分别为A1、B1 , 且直线OA、OB的斜率之积等于- ,问四边形ABA1B1的面积S是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】)已知命题p:“x∈[1,2],x2﹣a≥0”,命题q:“x∈R,x2+2ax+2﹣a=0”.若命题“p且q”是真命题,则实数a的取值范围为(
A.﹣2≤a≤1
B.a≤﹣2或1≤a≤2
C.a≥1
D.a≤﹣2或 a=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)= (x>0).
(1)求f(x)的最大值;
(2)证明:对任意实数a、b,恒有f(a)<b2﹣3b+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】考拉兹猜想又名3n+1猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能得到1.阅读如图所示的程序框图,运行相应程序,输出的结果i=(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1 , x2 , x3 , x4 , 则x1+x2+x3+x4=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆 的左焦点为F1 , 右焦点为F2 , 过F1的直线交椭圆于A,B两点,△ABF2的周长为8,且△AF1F2面积最大时,△AF1F2为正三角形.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:①以PQ为直径的圆与x轴的位置关系? ②在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一组数据如表:

x

1

2

3

4

5

y

1.3

1.9

2.5

2.7

3.6


(1)画出散点图;
(2)根据下面提供的参考公式,求出回归直线方程,并估计当x=8时,y的值.
(参考公式: = = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式|x+1|+| ﹣1|≤a有解,则实数a的取值范围是(
A.a≥2
B.a<2
C.a≥1
D.a<1

查看答案和解析>>

同步练习册答案