【题目】(本小题14分)已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN//平面PMB;
(2)证明:平面PMB平面PAD;
(3)求点A到平面PMB的距离.
【答案】(1)见解析;(2)见解析; (3).
【解析】
试题分析:(1)解决立体几何的有关问题,空间想象能力是非常重要的,但新旧知识的迁移融合也很重要,在平面几何的基础上,把某些空间问题转化为平面问题来解决,有时很方便;(2)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质,证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化;(3)证明两个平面垂直,首先考虑直线与平面垂直,也可以简单记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是解决这类题的关键.
试题解析:(1)证明:取PB中点Q,连结MQ、NQ,
因为M、N分别是棱AD、PC中点,所以
QN//BC//MD,且QN=MD,于是DN//MQ.
4分
(2)
又因为底面ABCD是、边长为的菱形,且M为AD中点,
所以.又所以.
8分
(3)因为M是AD中点,所以点A与D到平面PMB等距离.
过点D作于H,由(2)平面PMB平面PAD,所以.
故DH是点D到平面PMB的距离.
所以点A到平面PMB的距离为. 12分
科目:高中数学 来源: 题型:
【题目】有下列结论:
(1)命题 ,为真命题 ;
(2)设 ,,则 p 是 q 的充分不必要条件 ;
(3)命题:若,则或,其否命题是假命题;
(4)非零向量与满足,则与的夹角为.
其中正确的结论有( )
A. 3个 B. 2个 C. 1个 D. 0个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)设定义在D上的函数y=h(x)在点P(x0 , h(x0))处的切线方程为l:y=g(x),若 >0在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市市民用水拟实行阶梯水价,每人用水量不超过立方米的部分按元/立方米收费,超出立方米的部分按元/立方米收费,从该市随机调查了位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列,
(Ⅰ)求的值及居民用水量介于的频数;
(Ⅱ)根据此次调查,为使以上居民月用水价格为元/立方米,应定为多少立方米?(精确到小数点后位)
(Ⅲ)若将频率视为概率,现从该市随机调查名居民的用水量,将月用水量不超过立方米的人数记为,求其分布列及其均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的两个焦点坐标分别为F1(-,0)和F2(,0),且椭圆过点
(1)求椭圆方程;
(2)过点作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点,证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为An , 对任意n∈N*满足 ﹣ = ,且a1=1,数列{bn}满足bn+2﹣2bn+1+bn=0(n∈N*),b3=5,其前9项和为63.
(1)求数列{an}和{bn}的通项公式;
(2)令cn= + ,数列{cn}的前n项和为Tn , 若对任意正整数n,都有Tn≥2n+a,求实数a的取值范围;
(3)将数列{an},{bn}的项按照“当n为奇数时,an放在前面;当n为偶数时,bn放在前面”的要求进行“交叉排列”,得到一个新的数列:a1 , b1 , b2 , a2 , a3 , b3 , b4 , a4 , a5 , b5 , b6 , …,求这个新数列的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点F1(﹣c,0),F2(c,0)分别是椭圆C: (a>b>0)的左右焦点,经过F1做x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2垂线交直线 于点Q.
(Ⅰ)如果点Q的坐标是(4,4),求此时椭圆C的方程;
(Ⅱ)证明:直线PQ与椭圆C只有一个交点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第一次大考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
(I)请完成列联表
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(Ⅱ)根据列联表的数据能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?
参考公式和临界值表
,其中.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com