精英家教网 > 高中数学 > 题目详情

【题目】已知正方形的对角线相交于点,将沿对角线折起,使得平面平面(如图),则下列命题中正确的为  

A.直线直线,且直线直线

B.直线平面,且直线平面

C.平面平面,且平面平面

D.平面平面,且平面平面

【答案】C

【解析】

由直线直线不成立,知A错误;由直线平面不成立,知B错误;由平面平面,且平面平面,知C正确;由平面平面不成立,知D错误.

由题意,平面平面,平面平面

平面平面平面

,则平面

平面,即,显然不垂直,故假设不成立,

直线直线不成立,故A错误;

平面,且平面,则

事实上,不成立,直线平面不成立,故B错误;

的中点,

平面平面,平面平面平面

平面平面平面平面

平面平面平面平面,故C正确;

如下图所示,取的中点,连接

的中点,

若平面平面,平面平面平面

平面平面

,且平面

平面

事实上,不垂直,故D错误.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形均为 直角梯形, ,四边形为平行四边形,平面平面

求证:平面平面

是边长为的等边三角形,且异面直线所成的角为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点到两点的距离之和等于,设点的轨迹为

(1)求曲线的方程;

(2)过点作直线与曲线交于点,以线段为直径的圆能否过坐标原点,若能,求出直线的方程,若不能请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若存在与函数的图象都相切的直线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱

B.四棱锥的四个侧面都可以是直角三角形

C.有两个面互相平行,其余各面都是梯形的多面体是棱台

D.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法错误的是

A. 的最小值点

B. 函数有且只有1个零点

C. 存在正实数,使得恒成立

D. 对任意两个不相等的正实数,若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,数列{bn}满足:bn+12bn+2,且an+1anbn

1)求证:数列{bn+2}是等比数列;

2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥DABC中,已知ACBCACDCBCDCEF分别为BDCD的中点.求证:

(1) EF∥平面ABC

(2) BD⊥平面ACE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若的值域为,求的值;

(Ⅱ)巳,是否存在这祥的实数,使函数在区间内有且只有一个零点.若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案