【题目】16种食品所含的热量值如下:
111 123 123 164 430 190 175 236
430 320 250 280 160 150 210 123
(1)求数据的中位数与平均数;
(2)用这两种数字特征中的哪一种来描述这个数据集更合适?
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. “f(0)”是“函数f(x)是奇函数”的充要条件
B. 若p:,,则:,
C. “若,则”的否命题是“若,则”
D. 若为假命题,则p,q均为假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;
(1)求曲线的极坐标方程与直线的直角坐标方程;
(2)在曲线上取两点,与原点构成,且满足,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某出版公司为一本畅销书定价如下:
这里 n 表示订购书的数量 , C(n)是订购 n本书所付的钱款数(单位 :元).
(1)有多少个 n , 会出现买多于 n 本书比恰好买n 本书所花的钱少?
(2)若一本书的成本是 5 元, 现有两人来买书, 每人至少买 1 本, 两人共买 60 本 ,则出版公司至少能赚多少钱? 至多能赚多少钱?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1,点M、E分别是PA、PD的中点
(1)求证:CE//平面BMD
(2)点Q为线段BP中点,求直线PA与平面CEQ所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= 为奇函数.
(1)求b的值;
(2)证明:函数f(x)在区间(1,+∞)上是减函数;
(3)解关于x的不等式f(1+x2)+f(-x2+2x-4)>0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:
每月完成合格产品的件数(单位:百件) | |||||
频数 | 10 | 45 | 35 | 6 | 4 |
男员工人数 | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格产品的件数不少于3200件的员工被评为“生产能手”.由以上统计数据填写下面列联表,并判断是否有95%的把握认为“生产能手”与性别有关?
非“生产能手” | “生产能手” | 合计 | |
男员工 | |||
span>女员工 | |||
合计 |
(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出件的部分,累进计件单价为1.2元;超出件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3100元的人数为,求的分布列和数学期望.
附:,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=e2x﹣ax2+1在[1,2]上是减函数,则实数a的取值范围是( )
A. [,+∞) B. (,+∞) C. [,+∞) D. (,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)已知直线与曲线交于两点,且,求实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com