【题目】已知在四棱锥中,底面是边长为的正方形,是正三角形,,分别是的中点。
(1)求证:;
(2)求平面与平面所成锐二面角的大小;
(3)线段上是否存在一个动点,使得直线与平面所成角为,若存在,求线段的长度,若不存在,说明理由.
【答案】(I)见解析,(Ⅱ),(Ⅲ)不存在
【解析】
(I)先根据面面垂直得线面垂直,再根据平行转化得结果,(Ⅱ)先根据条件建立空间直角坐标系,设立各点坐标,列方程组解得各面法向量,根据向量数量积得法向量夹角,最后根据二面角与法向量夹角关系得结果,(Ⅲ)先假设存在,根据(Ⅱ)可得平面法向量,再根据向量数量积得直线方向向量与法向量夹角,结合条件得方程,根据方程解的情况作判断.
(I)证明:∵,,
∴,
又∵,∴,
(Ⅱ)取中点,连接
∵, ,∴,
如图以点为原点分别以所在直线为轴轴轴建立空间直角坐标系,∴, ,, ,
设平面的法向量为,,
取∴
又平面的法向量为,
设平面与平面所成锐角二面角为
∴,
∴平面与平面所成锐角二面角为.
(Ⅲ)设,
,
∴,
∴,
即,无解,∴不存在这样的.
科目:高中数学 来源: 题型:
【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2021年起,新高考科目设置采用“”模式,普通高中学生从高一升高二时将面临着选择物理还是历史的问题,某校抽取了部分男、女学生调查选科意向,制作出如右图等高条形图,现给出下列结论:
①样本中的女生更倾向于选历史;
②样本中的男生更倾向于选物理;
③样本中的男生和女生数量一样多;
④样本中意向物理的学生数量多于意向历史的学生数量.
根据两幅条形图的信息,可以判断上述结论正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,60件,30件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从乙车间的产品中抽取了2件。
(Ⅰ)应从甲、丙两个车间的产品中分别抽取多少件,样本容量n为多少?
(Ⅱ)设抽出的n件产品分别用,,…,表示,现从中随机抽取2件产品。
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设M为事件“抽取的2件产品来自不同车间”,求事件M发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物.虽然只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响.我国标准如下表所示.我市环保局从市区四个监测点2018年全年每天的监测数据中随机抽取天的数据作为样本,监测值如茎叶图如图所示.
(Ⅰ)求这天数据的平均值;
(Ⅱ)从这天的数据中任取天的数据,记表示其中空气质量达到一级的天数,求的分布列和数学期望;
(Ⅲ)以天的日均值来估计一年的空气质量情况,则一年(按天计算)中大约有多少天的空气质量达到一级.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( )
A. 互联网行业从业人员中后占一半以上
B. 互联网行业中从事技术岗位的人数超过总人数的
C. 互联网行业中从事运营岗位的人数后比前多
D. 互联网行业中从事运营岗位的人数后比后多
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com