精英家教网 > 高中数学 > 题目详情

【题目】小王想进行理财投资,根据长期收益率市场顶测,投资A类产品和B类产品的收益分别为(万元),它们与投资额x(万元)存在如下关系式:,小王准备将200万元资金投入AB两类理财产品,公司要求每类产品的投资金额不能低于25万元

1)若对B类产品的投资金额为x(万元),求总收益y(万元)关于x的函数关系式;

2)请你帮助小王预算如何分配投资资金,才能使总收益最大,并求出最大总收益.

【答案】(1),定义域为;(2)当A类产品投入164万元,B类产品投入36万元时总收益最大为248万元

【解析】

1)对B类产品的投资x万元,则对A类产品的投资万元,则,分别求出对应的收益值,相加即可;

(2)令,根据二次函数的性质,即可求出其最大值.

1)根据题意,对B类产品的投资x万元,

则对A类产品的投资万元

所以函数的定义域为.

2)令

时,即时,.

因此当A类产品投入164万元,

B类产品投入36万元时总收益最大为248万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了更好地规划进货的数量,保证蔬菜的新鲜程度,某蔬菜商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如右下表所示((吨)为买进蔬菜的质量,(天)为销售天数):

(Ⅰ) 根据右表提供的数据在网格中绘制散点图,并判断是否线性相关,若线性相关,用最小二乘法求出关于的线性回归方程

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(Ⅱ)根据(Ⅰ)中的计算结果,若该蔬菜商店准备一次性买进蔬菜25吨,则预计需要销售多少天.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,已知曲线,将曲线上的点向左平移一个单位,然后纵坐标不变,横坐标轴伸长到原来的2倍,得到曲线,又已知直线是参数),且直线与曲线交于两点.

I)求曲线的直角坐标方程,并说明它是什么曲线;

II)设定点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题的真假:

1是有理数;(2

3)奇数的平方仍是奇数;(4)两个集合的交集还是一个集合;

5)每一个素数都是奇数;(6)方程有实数根;

7;(8)如果,那么

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区高考实行新方案规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择物理、化学和生物三个选考科目,则学生甲的选考方案确定,“物理、化学和生物为其选考方案.

某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:

性别

选考方案确定情况

物理

化学

生物

历史

地理

政治

男生

选考方案确定的有8人

8

8

4

2

1

1

选考方案待确定的有6人

4

3

0

1

0

0

女生

选考方案确定的有10人

8

9

6

3

3

1

选考方案待确定的有6人

5

4

1

0

0

的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线.C与直线相切于点A,且点A的纵坐标为,圆心C在直线.

1)求直线之间的距离;

2)求圆C的标准方程;

3)若直线经过点且与圆C交于两点,当△CPQ的面积最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 平面,侧面是正方形,点为棱的中点,点分别在棱上,且

(1)证明:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班共有学生45人,其中女生18人,现用分层抽样的方法,从男、女学生中各抽取若干学生进行演讲比赛,有关数据见下表(单位:人)

性别

学生人数

抽取人数

女生

18

男生

3

1)求

2)若从抽取的学生中再选2人做专题演讲,求这2人都是男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥(如图1)的平面展开图(如图2)中,四边形为边长为的正方形,△ABE和△BCF均为正三角形,在三棱锥中:

(I)证明:平面 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)若点在棱上,满足 ,点在棱上,且的取值范围.

查看答案和解析>>

同步练习册答案