精英家教网 > 高中数学 > 题目详情
13.函数f(x)=lnx+x-4的零点在区间(k,k+1)内,则整数k的值是(  )
A.1B.2C.3D.4

分析 根据函数零点的判定定理可得函数在区间(2,3)上存在零点,结合所给的条件可得k的值.

解答 解:由函数的解析式可得函数在(0,+∞)上是增函数,
且f(2)=ln2+2-4<0,f(3)=ln3+3-4>0,
故有f(2)f(3)<0,
根据函数零点的判定定理可得函数在区间(2,3)上存在零点.
结合所给的条件可得,故k=2,
故选:B.

点评 本题主要考查函数零点的判定定理的应用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在△ABC中,$A=\frac{π}{3}$,$BC=\sqrt{3}$,AC=1,那么AB等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在棱长为a的正方体ABCD-A1B1C1D1中,E,F分别为DD1和BB1的中点.
(1)求证:AEC1F是平行四边形;
(2)求AE和AF之间的夹角的余弦值;
(3)求四边形AEC1F的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C所对的边分别是a,b,c,已知4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$,且a+b=5,c=$\sqrt{7}$,则ab为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=x2+(2a-1)x+a-2的一个零点比1大,另一个零点比1小,则实数a的取值范围是(-∞,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算下列式子的值:
(1)$\frac{1}{\sqrt{5}+2}$-($\sqrt{3}$-1)0-$\sqrt{9-4\sqrt{5}}$;   
(2)lg$\frac{3}{7}$+lg70-lg3-$\sqrt{l{g}^{2}3-lg9+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若存在x∈[2,3],使不等式$\frac{1+ax}{x•{2}^{x}}$≥1成立,则实数a的最小值为$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若数列{an}满足:对任意的n∈N*,只有有限个正整数m使得am<n成立,记这样的m的个数为(an*,则得到一个新数列{(an*}.例如,若数列{an}是1,2,3,…n,…,则数列{(an*}是0,1,2,…,n-1,…已知对任意的n∈N*,an=n2,则((a4**=(  )
A.8B.20C.32D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x-2≤0}\\{x-2y≤0}\\{x+2y-8≤0}\end{array}}\right.$,则目标函数z=3x+y的最大值为9.

查看答案和解析>>

同步练习册答案