精英家教网 > 高中数学 > 题目详情
13.已知a>0且a≠1,f(x)+g(x)=ax-a-x+2,其中f(x)为R上的奇函数,g(x)为R上的偶函数,若g(2)=a,则f(2)的值为(  )
A.2B.1C.$\frac{17}{4}$D.$\frac{15}{4}$

分析 由已知中定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax-a-x+2根,据函数奇偶性的性质,得到关于f(x),g(x)的另一个方程f(-x)+g(-x)=a-x-ax+2,并由此求出f(x),g(x)的解析式,再根据g(2)=a=2求出a值后,即可得到f(2)的值.

解答 解:∵f(x)是定义在R上的奇函数,g(x)是定义在R上的偶函数
∴f(-x)=-f(x),g(-x)=g(x)
∵f(x)+g(x)=ax-a-x+2 ①
∴f(-x)+g(-x)=-f(x)+g(x)=a-x-ax+2 ②
①②联立解得f(x)=ax-a-x,g(x)=2
由已知g(2)=a=2
∴a=2,f(x)=2x-2-x
∴f(2)=4-$\frac{1}{4}$=$\frac{15}{4}$.
故选:D.

点评 本题考查的知识点是函数解析式的求法--方程组法,函数奇偶性的性质,其中利用奇偶性的性质,求出f(x),g(x)的解析式,再根据g(2)=a=2求出a值,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知O为△ABC内一点,且$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,则△AOC与△ABC的面积之比是$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某场排球赛决赛将在甲队与乙队之间展开,据以往统计,甲队在每局比赛中胜乙队的概率为$\frac{2}{3}$,比赛采取五局三胜制,即谁先胜三局谁就获胜,并停止比赛,则甲队以3:1获胜的概率为(  )
A.$\frac{2}{3}$B.$\frac{8}{27}$C.$\frac{2}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=cos4x-2sinxcosx-sin4x.
(1)若x是某三角形的一个内角,且f(x)=-$\frac{\sqrt{2}}{2}$,求角x的大小;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的最小值及取得最小值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$=(1,2),$\overrightarrow{a}$+$\overrightarrow{b}$=(4,-10),则$\overrightarrow{a}$等于(  )
A.(-2,-2)B.(2,2)C.(-2,2)D.(2,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若在定义域内存在实数x满足f(-x)=f(x),则称函数f(x)为“局部偶函数”.
(Ⅰ)判断函数f(x)=x-$\frac{1}{x}$是否为“局部偶函数”,并说明理由;
(Ⅱ)若F(x)=$\left\{\begin{array}{l}{{9}^{x}-k•{3}^{x}+{k}^{2}-16,x>0}\\{k•{3}^{x}-{9}^{x},x<0}\end{array}\right.$为“局部偶函数”,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{ax+b}{{x}^{2}+1}$是定义域在(-1,1)上的奇函数,且f($\frac{1}{2}$)=$\frac{2}{5}$.
(Ⅰ)求f(x)的解析式;
(Ⅱ)判断f(x)的单调性,并证明你的结论;
(Ⅲ)若f(2t-2)+f(t)<0,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设方程x2-$\sqrt{10}$x+2=0的两根为α、β,求$lo{g}_{2}\frac{{α}^{2}-αβ+{β}^{2}}{(α-β)^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.语句“x>0”是命题
B.若命题p为真命题,命题q为假命题,则p∨q为假命题
C.若命题p:?x∈R,x2+1≥0,则$?p:?{x_0}∈R,x_0^2+1≥0$
D.若一个命题的逆命题为假,则它的否命题一定为假

查看答案和解析>>

同步练习册答案