精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=2x-2-x
(1)求f(x)的零点.
(2)用定义判别f(x)的奇偶性;
(3)用定义证明f(x)在(-∞,+∞)上为增函数.

分析 (1)令f(x)=0,可得f(x)的零点.
(2)验证f(-x)=-f(x),即可判断f(x)的奇偶性;
(3)用定义法证明单调性一般可以分为五步,取值,作差,化简变形,判号,下结论.

解答 解:(1)由2x-2-x=0,可得x=0,即f(x)的零点是0.
(2)函数的定义域为R,f(-x)=2-x-2x=-(2x-2-x)=-f(x),
∴函数是奇函数;
(3)任取x1,x2∈(-∞,+∞),且x1<x2,则f(x1)-f(x2)=${2}^{{x}_{1}}-{2}^{-{x}_{1}}$-(${2}^{{x}_{2}}-{2}^{-{x}_{2}}$)
=$({2}^{{x}_{1}}-{2}^{{x}_{2}})(1+\frac{1}{{2}^{{x}_{1}+{x}_{2}}})$,
∵x1<x2
∴${2}^{{x}_{1}}-{2}^{{x}_{2}}$<0,
∴f(x1)<f(x2),
∴f(x)在(-∞,+∞)上为增函数.

点评 本题考查函数的零点,奇偶性、单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某射手射击一次所得环数X的分布列如表:
X78910
P0.10.40.30.2
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.
(1)求ξ>7的概率;
(2)求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=ln($\sqrt{1+3{x}^{2}}$-$\sqrt{3}x$)+1,则f(lg2015)+f(lg$\frac{1}{2015}$)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=x2+x+$\frac{1}{2}$的定义域为[1,2],那么在f(x)的值域中共有几个整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知复平面内点A、B对应的复数分别是z1=2a+6i,z2=-1+i,其中,设$\overrightarrow{AB}$对应的复数为z.
(1)求复数z;
(2)若复数z对应的点P在直线y=$\frac{1}{2}$x上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数$f(x)=\left\{\begin{array}{l}{2^{-x}}({x≤1})\\{log_{16}}x({x>1})\end{array}\right.$,则满足$f(x)=\frac{1}{4}$的实数x的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|=2,在△ABC中,若$\overrightarrow{AB}$=$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{CA}$=$\overrightarrow{a}$,则A的大小为(  )
A.120°B.30°C.150°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知单位向量$\overrightarrow{e}$与向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$-$\overrightarrow{e}$|=|$\overrightarrow{a}$|,($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{b}$-$\overrightarrow{e}$)=0,对每一个确定的向量$\overrightarrow{a}$,都有与其对应的向量$\overrightarrow{b}$满足以上条件,设M,m分别为|$\overrightarrow{b}$|的最大值和最小值,令t=M-m,则对任意的向量$\overrightarrow{a}$,实数t的取值范围是 (  )
A.[0,1]B.[0,$\frac{1}{2}$]C.[$\frac{1}{2}$,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=sin(ωx+\frac{π}{6})$图象的相邻两条对称轴之间的距离为$\frac{π}{4}$,则f(x)的最小正周期是(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

同步练习册答案