精英家教网 > 高中数学 > 题目详情
已知a,b,c均为正数,且(
1
3
)a=log2a
(
1
3
)b=log
1
2
b
3c=log
1
2
c
,则a,b,c的大小关系为(  )
A、c<a<b
B、a<b<c
C、c<b<a
D、b<a<c
分析:由三个方程(
1
3
)a=log2a
(
1
3
)b=log
1
2
b
3c=log
1
2
c
,判断出a,b,c的取值范围,再比较它们的大小关系选出正确选项
解答:解:∵a,b,c均为正数,且(
1
3
)a=log2a
(
1
3
)b=log
1
2
b
3c=log
1
2
c

(
1
3
)
a
=log2a
>0,得a>1,从而(
1
3
)
a
<1
,即log2a<1,由此得1<a<2
(
1
3
)
b
=log
1
2
b
>0,得0<b<1,从而有(
1
3
)
b
=log
1
2
b<1
,可得
1
2
<b<1

3c=log
1
2
c
>0,得0<c<1,从而有3c=log
1
2
c
>1,可得0<c<
1
2

∴c<b<a
故选C
点评:本题考查不等式比较大小,熟练掌握指数函数与对数函数的性质是解本题的关键,本题采用了中间量法比较三个数的大小,此法特点是根据有关知识求出三个数具体范围,从而得出三数的大小.本题对推理判断的能力要求较高,是一个能力型的题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c均为正实数,记M=max{
1
ac
+b,
1
a
+bc,
a
b
+c}
,则M的最小值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浦东新区二模)已知直角△ABC的三边长a,b,c,满足a≤b<c
(1)在a,b之间插入2011个数,使这2013个数构成以a为首项的等差数列{an },且它们的和为2013,求c的最小值;
(2)已知a,b,c均为正整数,且a,b,c成等差数列,将满足条件的三角形的面积从小到大排成一列S1,S2,S3,…Sn,且Tn=-S1+S2-S3+…+(-1) nSn,求满足不等式T2n>6•2n+1的所有n的值;
(3)已知a,b,c成等比数列,若数列{Xn}满足
5
Xn=(
c
a
)n-(-
a
c
)n
(n∈N+),证明:数列{
Xn
}中的任意连续三项为边长均可以构成直角三角形,且Xn是正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省高三下学期2月月考理科数学试卷 题型:填空题

已知a,b,c均为正实数,记,则M的最小值为    

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直角△ABC的三边长a,b,c,满足a≤b<c
(1)在a,b之间插入2011个数,使这2013个数构成以a为首项的等差数列{an },且它们的和为2013,求c的最小值;
(2)已知a,b,c均为正整数,且a,b,c成等差数列,将满足条件的三角形的面积从小到大排成一列S1,S2,S3,…Sn,且数学公式,求满足不等式数学公式的所有n的值;
(3)已知a,b,c成等比数列,若数列{Xn}满足数学公式(n∈N+),证明:数列{数学公式 }中的任意连续三项为边长均可以构成直角三角形,且Xn是正整数.

查看答案和解析>>

同步练习册答案