精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sinωx•cosωx+
3
cos2ωx-
3
2
(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为
π
4

(I)求f(x)的表达式;
(Ⅱ)将函数f(x)的图象向右平移
π
8
个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间[0,
π
2
]
上有且只有一个实数解,求实数k的取值范围.
(Ⅰ) f(x)=
1
2
sin2ωx+
3
1+cos2ωx
2
-
3
2
=
1
2
sin2ωx+
3
2
cos2ωx=sin(2ωx+
π
3
)
,-------(3分)
由题意知,最小正周期T=2×
π
4
=
π
2
,又T=
=
π
ω
=
π
2
,所以ω=2,
f(x)=sin(4x+
π
3
)
.-------------(6分)
(Ⅱ)将f(x)的图象向右平移个
π
8
个单位后,得到 y=sin[4(x-
π
8
)+
π
3
]
=sin(4x-
π
6
)
的图象,
再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=sin(2x-
π
6
)
的图象,所以g(x)=sin(2x-
π
6
)
.---------(9分)
2x-
π
6
=t
,∵0≤x≤
π
2
,∴-
π
6
≤t≤
5
6
π
,g(x)+k=0,在区间[0,
π
2
]
上有且只有一个实数解,
即函数y=g(x)与y=-k在区间[0,
π
2
]
上有且只有一个交点,由正弦函数的图象可知-
1
2
≤-k<
1
2
或-k=1
-
1
2
<k≤
1
2
,或k=-1.--------(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的最大值和最小值;
(2)若方程仅有一解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
求函数的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,若
cosA
a
=
cosB
b
=
sinC
c
,则△ABC是(  )
A.有一内角为30°的直角三角形
B.等腰直角三角形
C.有一内角为30°的等腰三角形
D.等边三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,tan(
π
4
+α)=3,计算:
(1)tanα
(2)
2sinαcosα+3cos2α
5cos2α-3sin2α

(3)sinα•cosα

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
AC
=(cos
x
2
+sin
x
2
,-sin
x
2
),
BC
=(cos
x
2
-sin
x
2
,2cos
x
2
)
,设f(x)=
AC
BC

(1)求f(x)的最小正周期和单调递减区间;
(2)设关于x的方程f(x)=a在[-
π
2
π
2
]有两个不相等的实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三角形三边长之比为5:12:13,则此三角形为(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文)已知函数f(x)=(
3
sinωx+cosωx)cosωx-
1
2
(ω>0)
的最小正周期为4π.
(1)求ω的值;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,两个圆形飞轮通过皮带传动,大飞轮O1的半径为2r(r为常数),小飞轮O2的半径为r,O1O2=4r.在大飞轮的边缘上有两个点A,B,满足∠BO1A=,在小飞轮的边缘上有点C.设大飞轮逆时针旋转,传动开始时,点B,C在水平直线O1O2上.

(1)求点A到达最高点时A,C间的距离;
(2)求点B,C在传动过程中高度差的最大值.

查看答案和解析>>

同步练习册答案