【题目】已知函数满足.
(Ⅰ)当时,解不等式;
(Ⅱ)若关于x的方程的解集中有且只有一个元素,求a的值;
(Ⅲ)设,若对,函数在区间上的最大值与最小值的差不超过1,求a的取值范围.
科目:高中数学 来源: 题型:
【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
附:K2= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,为的导函数,其中.
(1)当时,求函数的单调区间;
(2)若方程有三个互不相同的根0,,,其中.
①是否存在实数,使得成立?若存在,求出的值;若不存在,说明理由.
②若对任意的,不等式恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2022年北京冬季奥运会, 某校开设了冰球选修课,12名学生被分成甲、乙两组进行训练.他们的身高(单位:cm)如下图所示:
设两组队员身高平均数依次为,,方差依次为,,则下列关系式中完全正确的是( )
A. =, =B. <,>
C. <,=D. <,<
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的上下焦点分别为F1 , F2 , 离心率为 ,P为C上动点,且满足 |,△QF1F2面积的最大值为4. (Ⅰ)求Q点轨迹E的方程和椭圆C的方程;
(Ⅱ)直线y=kx+m(m>0)与椭圆C相切且与曲线E交于M,N两点,求 的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com