精英家教网 > 高中数学 > 题目详情

【题目】已知函数满足

(Ⅰ)当时,解不等式

(Ⅱ)若关于x的方程的解集中有且只有一个元素,求a的值;

(Ⅲ)设,若对,函数在区间上的最大值与最小值的差不超过1,求a的取值范围.

【答案】(Ⅰ); (Ⅱ);(Ⅲ).

【解析】

(Ⅰ)当等价于解出即可。

(Ⅱ)的解集中有且只有一个元素,等价于有且仅有一解的问题。

(Ⅲ)当时,所以上单调递减函数,在区间上的最大值与最小值分别为,即转化成对任意 恒成立的问题。

(Ⅰ)由题意可得,得,解得

(Ⅱ)方程有且仅有一解, 等价于有且仅有一解,且

时,符合题意;

时,此时满足题意,

综上,

(Ⅲ)当时,

所以上单调递减

函数在区间上的最大值与最小值分别为

对任意 恒成立,

因为, 所以函数在区间上单调递增,

所以时,y有最小值

,得

的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若= + ,则+的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

附:K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列, 是等比数列,且 .

1)数列的通项公式;

2)设,求数列项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数)的图像在点处的切线方程为.

(1)求实数的值及函数的单调区间;

(2)设函数,证明时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数,其中.

(1)当时,求函数的单调区间;

(2)若方程有三个互不相同的根0,,其中.

①是否存在实数,使得成立?若存在,求出的值;若不存在,说明理由.

②若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为菱形,GACBD交点,

(I)证明:平面平面

(II)若 三棱锥的体积为,求该三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2022年北京冬季奥运会, 某校开设了冰球选修课,12名学生被分成甲、乙两组进行训练.他们的身高(单位:cm)如下图所示:

设两组队员身高平均数依次为,方差依次为,则下列关系式中完全正确的是( )

A. =, =B. <,>

C. <,=D. <,<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的上下焦点分别为F1 , F2 , 离心率为 ,P为C上动点,且满足 |,△QF1F2面积的最大值为4. (Ⅰ)求Q点轨迹E的方程和椭圆C的方程;
(Ⅱ)直线y=kx+m(m>0)与椭圆C相切且与曲线E交于M,N两点,求 的取值范围.

查看答案和解析>>

同步练习册答案