精英家教网 > 高中数学 > 题目详情

【题目】手机运动计步已成为一种时尚,某中学统计了该校教职工一天行走步数(单位:百步),绘制出如下频率分布直方图:

(Ⅰ)求直方图中的值,并由频率分布直方图估计该校教职工一天步行数的中位数;

(Ⅱ)若该校有教职工175人,试估计一天行走步数不大于130百步的人数;

(Ⅲ)在(Ⅱ)的条件下该校从行走步数大于150百步的3组教职工中用分层抽样的方法选取6人参加远足活动,再从6人中选取2人担任领队,求这两人均来自区间的概率.

【答案】,中位数为125;(98;(

【解析】

)利用各小矩形的面积之和为1即可得到a,中位数的估计值是小矩形面积和为时的x的值;

)先算出一天步行数不大于130百步的的概率(前4个小矩形的面积之和),再乘以人数175即可;

)先由分层抽样确定出每组抽取的人数,再结合古典概型的概率计算公式计算即可.

)由题意得

解得,设中位数为,则

解得,所以中位数为125.

)由

所以估计一天步行数不大于130百步的人数为98.

)在区间中有28人,在区间中有7人,在区间中有7

人,按分层抽样抽取6人,则从抽取4人,中各抽取1

人,设从抽取,从中抽B,从中抽C,则从6

人中抽取2人的情况有:

15种情况,

其中满足两人均来自区间的有,共6种情况,

所以概率,所以两人均来自区间的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线轴上的定点,过抛物线焦点作一条直线交两点,连接并延长,交两点.

1)求证:直线过定点;

2)求直线与直线最大夹角为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为(其中为参数),以原点为极点,以轴为极轴建立极坐标系,曲线的极坐标方程为为常数,且),直线与曲线交于两点.

1)若,求实数的值;

2)若点的直角坐标为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调节高三学生学习压力,某校高三年级举行了拔河比赛,在赛前三位老师对前三名进行了预测,于是有了以下对话:老师甲:“7班男生比较壮,7班肯定得第一名”.老师乙:“我觉得14班比15班强,14班名次会比15班靠前”.老师丙:“我觉得7班能赢15班”.最后老师丁去观看完了比赛,回来后说:“确实是这三个班得了前三名,且无并列,但是你们三人中只有一人预测准确”.那么,获得一、二、三名的班级依次为( )

A.7班、14班、15B.14班、7班、15

C.14班、15班、7D.15班、14班、7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,垂直于所在的平面的直径,是弧上的一个动点(不与端点重合),上一点,且是线段上的一个动点(不与端点重合).

(1)求证:平面

(2)若是弧的中点,是锐角,且三棱锥的体积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱ABCA1B1C1中,平面AA1B1B⊥平面ABCABAA1A1B4BC2AC2,点FAB的中点,点E为线段A1C1上的动点.

1)求证:BC⊥平面A1EF

2)若∠B1EC160°,求四面体A1B1EF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的直角坐标方程及直线的普通方程;

2)设直线与曲线交于两点(点在点左边)与直线交于点.求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C1a0b0)的左右焦点分别为F1F2,点O为坐标原点,点P在双曲线的右支上,且满足|F1F2|=2|OP|.若直线PF2与双曲线C只有一个交点,则双曲线C的离心率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面平面.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案