已知函数定义在(―1,1)上,对于任意的,有,且当时,。
(1)验证函数是否满足这些条件;
(2)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(3)若,求方程的解。
(1)详见解析;(2)奇函数,,证明详见解析;(3)x=
解析试题分析:(1)只要把x、y、代入函数解析式化简即可得:,然后验证定义域范围符合即可;
(2)可以根据函数的奇偶性和单调性的定义,并利用赋值法,变量代换的方法得到f(-x)=-f(x)为奇函数和、时为减函数;
(3)利用奇函数和,得到和,代入已知方程即可解决.
试题解析:(1) ∴-1<x<1即定义域为(-1,1)
∴成立
4分
(2)令x=y=0,则f(0)=0,令y=-x则f(x)+f(-x)=0
∴f(-x)=-f(x)为奇函数
任取、
8分
(3)∵f(x)为奇函数 ∴
由
∵f(x)为(-1,1)上单调函数 13分
考点:函数性质的综合应用.
科目:高中数学 来源: 题型:解答题
设命题p:f(x)=在区间(1,+∞)上是减函数;命题q:x1,x2是方程x2-ax-2=0的两个实根,且不等式m2+5m-3≥|x1-x2|对任意的实数a∈[-1,1]恒成立.若p∧q为真,试求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,两个工厂A、B相距2km,点O为AB的中点,要在以O为圆心,2km为半径的圆弧MN上的某一点P处建一幢办公楼,其中MA⊥AB,NB⊥AB.据测算此办公楼受工厂A的“噪音影响度”与距离AP的平方成反比,比例系数为1;办公楼受工厂B的“噪音影响度”与距离BP的平方也成反比,比例系数为4,办公楼与A、B两厂的“总噪音影响度”y是A、B两厂“噪音影响度”的和,设AP为xkm.
(1)求“总噪音影响度”y关于x的函数关系式,并求出该函数的定义域;
(2)当AP为多少时,“总噪音影响度”最小?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ex-e-x(x∈R且e为自然对数的底数).
(1)判断函数f(x)的奇偶性与单调性;
(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com