【题目】在数列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*(Ⅰ)证明:数列{an﹣n}是等比数列
(Ⅱ)记数列{an}的前n项和为Sn , 求证:Sn+1≤4Sn , 对任意n∈N*成立.
【答案】证明:(I)∵an+1=4an﹣3n+1,∴an+1﹣(n+1)=4(an﹣n),a1﹣1=1. ∴数列{an﹣n}是等比数列,首项为1,公比为4.
(II)由(I)可得:an﹣n=4n﹣1 , 解得an=n+4n﹣1 ,
Sn= + = + .
Sn+1= + .
∴4Sn﹣Sn+1=4× +4× ﹣ ﹣ = ﹣1= ≥0.
∴Sn+1≤4Sn , 对任意n∈N*成立.
【解析】(I)由an+1=4an﹣3n+1,变形an+1﹣(n+1)=4(an﹣n),a1﹣1=1.即可证明.(II)由(I)可得:an﹣n=4n﹣1 , 解得an=n+4n﹣1 , 利用等差数列与等比数列的求和公式可得:Sn , Sn+1 . 作差4Sn﹣Sn+1即可得出.
【考点精析】根据题目的已知条件,利用等比数列的通项公式(及其变式)的相关知识可以得到问题的答案,需要掌握通项公式:.
科目:高中数学 来源: 题型:
【题目】已知长为2的线段A B两端点A和B分别在x轴和y轴上滑动,线段AB的中点M的轨迹为曲线C. (Ⅰ)求曲线C的方程;
(Ⅱ)点P(x,y)是曲线C上的动点,求3x﹣4y的取值范围;
(Ⅲ)已知定点Q(0, ),探究是否存在定点T(0,t)(t )和常数λ满足:对曲线C上任意一点S,都有|ST|=λ|SQ|成立?若存在,求出t和λ;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某中学举行的物理知识竞赛中,将三个年级参赛学生的成绩在进行整理后分成5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15.
(1)求成绩在50~70分的频率是多少;
(2)求这三个年级参赛学生的总人数是多少;
(3)求成绩在80~100分的学生人数是多少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
时间代号t | 1 | 2 | 3 | 4 | 5 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
(Ⅰ)求y关于t的回归方程 = t+ .
(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.
附:回归方程 = t+ 中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为 ,M,N分别是AC.BC的中点,则EM,AN所成角的余弦值等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5.
(1)求点M的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为C,过点A(﹣2,3)的直线l被C所截得的线段的长为8,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向右平移 个单位,沿y轴向下平移1个单位,得到函数y= sinx的图象,则y=f(x)的解析式为( )
A.y= sin(2x+ )+1
B.y= sin(2x﹣ )+1
C.y= sin( x+ )+1
D.y= sin( x﹣ )+1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O为AC与BD的交点,E为棱PB上一点.
(Ⅰ)证明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com