精英家教网 > 高中数学 > 题目详情
已知m∈R,函数f(x)=
|2x+1|,x<1
log2(x-1),x>1
g(x)=x2-2x+2m-1,若函数y=f(g(x))-m有6个零点,则实数m的取值范围是(  )
A、(0,
3
5
B、(
3
5
3
4
)
C、(
3
4
,1)
D、(1,3)
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:由于函数f(x)=
|2x+1|,x<1
log2(x-1),x>1
,g(x)=x2-2x+2m-1.可得当g(x)=(x-1)2+2m-2<1,即(x-1)2<3-2m时,y=f(g(x))=|2g(x)+1|=|2(x-1)2+4m-3|.当g(x)=(x-1)2+2m-2>1,即(x-1)2>3-2m时,则y=f(g(x))=log2[(x-1)2+2m-3].再对m分类讨论,利用直线y=m与函数
y=f(g(x))图象的交点必须是6个即可得出.
解答:解:∵函数f(x)=
|2x+1|,x<1
log2(x-1),x>1
,g(x)=x2-2x+2m-1.
∴当g(x)=(x-1)2+2m-2<1时,即(x-1)2<3-2m时,则y=f(g(x))=|2g(x)+1|=|2(x-1)2+4m-3|.
当g(x)=(x-1)2+2m-2>1时,即(x-1)2>3-2m时,则y=f(g(x))=log2[(x-1)2+2m-3].
①当3-2m≤0即m≥
3
2
时,y=m只与y=f(g(x))=log2[(x-1)2+2m-3]的图象有两个交点,不满足题意,应该舍去.
②当m<
3
2
时,y=m与y=f(g(x))=log2[(x-1)2+2m-3]的图象有两个交点,需要直线y=m与函数
y=f(g(x))=|2g(x)+1|=|2(x-1)2+4m-3|的图象有四个交点时才满足题意.
∴0<m<3-4m,又m<
3
2
,解得0<m<
3
5

综上可得:m的取值范围是0<m<
3
5

故选A.
点评:本题考查了分段函数的图象与性质、含绝对值函数的图象、对数函数的图象、函数图象的交点的与函数零点的关系,考查了推理能力与计算能力、数形结合的思想方法、推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=ln(x-1)(x>1)的反函数是(  )
A、y=ex+1(x>1)
B、y=10x+1(x>1)
C、y=ex+1(x∈R)
D、y=10x+1(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

用餐时客人要求:将温度为10°C、质量为0.25kg的同规格的某种袋装饮料加热至30℃-40℃.服务员将x袋该种饮料同时放入温度为80°C、2.5kg质量为的热水中,5分钟后立即取出.设经过5分钟加热后的饮料与水的温度恰好相同,此时,m1kg该饮料提高的温度△t1°C与m2kg水降低的温度△t2°C满足关系式m1×△t1=0.8×m2×△t2,则符合客人要求的x可以是(  )
A、4B、10C、16D、22

查看答案和解析>>

科目:高中数学 来源: 题型:

已知菱形ABCD的对角线AC长为4,则
AD
AC
=(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为公差不为零的等差数列{an}的前n项和,若S9=3a8,则
S15
3a5
=(  )
A、15B、17C、19D、21

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-ax+1在区间(
1
2
 3)
上有零点,则实数a的取值范围是(  )
A、(2,+∞)
B、[2,+∞)
C、[2 
5
2
)
D、[2 
10
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥D-ABC中,AB=BC=1,AD=2,BD=
5
,AC=
2
,BC⊥AD,则关于该三棱锥的下列叙述正确的为(  )
A、表面积S=
1
2
5
+2
2
+3)
B、表面积为S=
1
2
5
+2
2
+2)
C、体积为V=1
D、体积为V=
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知随机变量ξ服从正态分布N(0,σ2).则“P(-2≤ξ≤2)=0.9”是“P(ξ>2)>0.04”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥底面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为(  )
A、
3
B、2
3
C、4
D、4
3

查看答案和解析>>

同步练习册答案