【题目】如图,在直三棱柱中,,为的中点.
(1)求证:平面;
(2)求证:平面平面.
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn,且Sn=λn2﹣16n+m.
(1)当λ=2时,求通项公式an;
(2)设{an}的各项为正,当m=15时,求λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在极坐系中,点绕极点顺时针旋转角得到点.以为原点,极轴为轴非负半轴,并取相同的单位长度建立平面直角坐标系,曲线:绕逆时针旋转得到曲线.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)点的极坐标为,直线过点且与曲线交于,两点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双纽线最早于1694年被瑞士数学家雅各布·伯努利用来描述他所发现的曲线.在平面直角坐标系中,把到定点,距离之积等于()的点的轨迹称为双纽线C.已知点是双纽线C上一点,下列说法中正确的有( )
①双纽线C关于原点O中心对称; ②;
③双纽线C上满足的点P有两个; ④的最大值为.
A.①②B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,、、两两垂直,,,,为线段上一点(端点除外).
(1)若异面直线、所成角的余弦值为,求的长;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴非负半轴建立平面直角坐标系,直线的参数方程为(为参数).
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)在(1)中,设曲线经过伸缩变换得到曲线,设曲线上任意一点为,当点到直线的距离取最大值时,求此时点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆:()的离心率为,并以抛物线:的焦点为上焦点.直线:()交抛物线于,两点,分别以,为切点作抛物线的切线,两切线相交于点,又点恰好在椭圆上.
(1)求椭圆的方程;
(2)求的最大值;
(3)求证:点恒在的外接圆内.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点的直线l:与抛物线E:()交于B,C两点,且A为线段的中点.
(1)求抛物线E的方程;
(2)已知直线:与直线l平行,过直线上任意一点P作抛物线E的两条切线,切点分别为M,N,是否存在这样的实数m,使得直线恒过定点A?若存在,求出m的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com