精英家教网 > 高中数学 > 题目详情

已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,而数列{bn}的首项为1,bn+1-bn-2=0.
(1)求a1和a2的值;
(2)求数列{an},{bn}的通项an和bn
(3)设cn=an•bn,求数列{cn}的前n项和Tn

解:(1)∵an是Sn与2的等差中项,
∴Sn=2an-2,∴a1=S1=2a1-2,解得a1=2,a1+a2=S2=2a2-2,解得a2=4;
(2)∵Sn=2an-2①,∴Sn-1=2an-1-2(n≥2)②,
①-②得:an=2an-2an-1,即
∵a1≠0,∴,即数列{an}是等比数列.
∵a1=2,∴
由已知得bn+1-bn=2,即数列{bn}是等差数列,
又b1=1,∴bn=b1+(n-1)d=1+2(n-1)=2n-1;
(3)由cn=an•bn=(2n-1)2n
③,
④,
③-④得:
即:=

分析:(1)由an是Sn与2的等差中项得递推式,在递推式中分别取n=1和n=2即可求得a1和a2的值;
(2)由(1)中的递推式和求得数列{an}是等比数列,由bn+1-bn-2=0推得数列{bn}是等差数列,则数列{an},{bn}的通项公式可求;
(3)把an和bn代入cn=an•bn后直接利用错位相减法求和.
点评:本题考查了等差数列和等比数列的通项公式,考查了错位相减法求数列的前n项和,求一个等差数列和一个等比数列的积数列的前n项和,常采用错位相减法.此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案