精英家教网 > 高中数学 > 题目详情

【题目】(2015·江苏)在△ABC中,已知AB=2,AC=3,A=60°.
(1)求BC的长;
(2)求sin2C的值.

【答案】
(1)


(2)


【解析】已知两边及夹角求第三边,应用余弦定理,可得BC的长,(2) 用(1)的结果,则内余弦定理先求出角C的余弦值,再根据平方关系及三角形角的范围求出角C的正弦值,最后利用二倍角公式求出sin2C的值.
由余弦定理知,BC2=AB2+AC2-2AB·AC·cosA=4+9-2x2x3x=7, 所以BC=
由正弦定理, ,所以sinC=·sinA==.
因为AB<BC, 所以C为锐角,则cosC===, 因此sin2C=2sinCcosC=2xx=.
【考点精析】解答此题的关键在于理解二倍角的正弦公式的相关知识,掌握二倍角的正弦公式:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C:+=1,(ab0)的离心率为,点(2,)在C上
(1)求C的方程;
(2)直线l不经过原点O,且不平行于坐标轴,lC有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·四川)已知ABC为△ABC的内角,tanAtanB是关于方程x2pxp+1=0(pR)两个实根.
(1)求C的大小
(2)若AB=1,AC,求p的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)如图,椭圆E:(a>b>0)经过点A(0,-1),且离心率为.

(1)求椭圆E的方程;
(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)设fn(x)=x+x2+x...+xn-1, nN, n≥2。
(1)fn'(2)
(2)证明:fn(x)在(0,)内有且仅有一个零点(记为an), 且0<an-<()n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·江苏) 已知函数f(x)=x3+ax2+b(a,bR).
(1)试讨论f(x)的单调性;
(2)若b=c-a(实数ca与无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-,-3)(1,)(,+),求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)已知抛物线C1:x2=4y的焦点F也是椭圆C2:(a>b>0)的一个焦点,C1与C2的公共弦长为2,过点F的直线l与C1相交于A, B两点,与C2相交于C,D两点,且 同向.
(1)C2的方程
(2)|AC|=|BD|,求直线l的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如题(19)图,三棱锥中,平面分别为线段上的点,且

(1)证明:平面.
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额
(单位:万元)都在区间内,其频率分布直方图如图所示.
(Ⅰ)直方图中的
(Ⅱ)在这些购物者中,消费金额在区间内的购物者的人数为 .

查看答案和解析>>

同步练习册答案