精英家教网 > 高中数学 > 题目详情

(1)等比数列中,对任意时都有成等差,求公比的值

(2)设是等比数列的前项和,当成等差时,是否有一定也成等差数列?说明理由

(3)设等比数列的公比为,前项和为,是否存在正整数,使成等差且也成等差,若存在,求出满足的关系;若不存在,请说明理由

 

 

 

【答案】

解:(1)当时有 

解得……………………………………5分

(2)当,显然不是等差数列,

所以

成等差得

(不合题意)所以

所以

即一定有成等差数列。…………………………………11分

(3)假设存在正整数,使成等差且也成等差。

,显然不是等差数列,

所以……………………………13分

成等差得

…………16分

为偶数时,,则有

为奇数时,

综上所述,存在正整数)满足题设,

为偶数时,;当为奇数时,。………………………18分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}是公比大于1的等比数列,a2=6,S3=26.
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列.设第n个等差数列的前n项和是An.求关于n的多项式g(n),使得An=g(n)dn对任意n∈N+恒成立;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知首项为a(a≠0)的数列{an}的前n项和为Sn,,若对任意的正整数m、n,都有
Sn
Sm
=(
n
m
)
2

(Ⅰ)证明:数列{an}是等差数列;
(Ⅱ)若a=1,数列{bn}的首项为b(b≠1),第n(n∈N*,n≥2)项bn是数列{an}的第bn-1项,求证:数列|bn-1|为等比数列;
(Ⅲ)若对(Ⅱ)中的数列{an}和{bn}及任意正整数n,均有2an+bn+11≥0成立,求实数b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)等比数列{an}中,对任意n≥2,n∈N时都有an-1,an+1,an成等差,求公比q的值;
(2)设Sn是等比数列{an}的前n项和,当S3,S9,S6成等差时,是否有a2,a8,a5一定也成等差数列?说明理由;
(3)设等比数列{an}的公比为q,前n项和为Sn,是否存在正整数k,使Sm-k,Sm+k,Sm成等差且an-k,an+k,an也成等差,若存在,求出k与q满足的关系;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄一模)设数列{an}满足a1=1,a2=2,对任意的n∈N*,an+2是an+1与an的等差中项.
(1)设bn=an+1-an,证明数列{bn}是等比数列,并求出其通项公式;
(2)写出数列{an}的通项公式(不要求计算过程),令cn=
3
2
n(
5
3
-an)
,求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案