精英家教网 > 高中数学 > 题目详情
19.为了得到函数$y=\sqrt{2}cos3x$的图象,可以将函数y=$\sqrt{2}$cos$\frac{3}{2}$x的图象所有点的(  )
A.横坐标伸长到原来的2倍(纵坐标不变)得到
B.横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变)得到
C.纵坐标伸长到原来的2倍(横坐标不变)得到
D.纵坐标缩短到原来的$\frac{1}{2}$(横坐标不变)得到

分析 根据三角函数的图象变换即可得到结论.

解答 解:将函数y=$\sqrt{2}$cos$\frac{3}{2}$x的图象所有点的横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变)即可得到函数$y=\sqrt{2}cos3x$的图象.
故选:B.

点评 本题主要考查三角函数图象之间的关系,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.以直角坐标系的原点O为极点,X轴的正半轴为极轴,建立坐标系,两个坐标系取相同的单位长度.已知直线L的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=tsina\end{array}\right.$(t为参数,0<a<π),曲线C的极坐标方程为ρsin2θ=4cosθ
(1)求曲线C的直角坐标方程
(2)设直线L与曲线C相交于A,B两点,|AB|=8时,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知F1,F2为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{16}$=1的左、右焦点,M为椭圆上一点,且△MF1F2的内切圆的周长等于3π,若满足条件的点M恰好有2个,则a2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知:p:方程x2-2mx+1=0有两个不等的正根;q:不等式|x-1|>m的解集为R.若p且q为假命题,?p为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知角x的终边上一点坐标为$({sin\frac{5π}{6},cos\frac{5π}{6}})$,则角x的最小值为(  )
A.$\frac{5π}{6}$B.$\frac{5π}{3}$C.$\frac{11π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点A(-1,0)和点B(1,1)在直线x+y-a=0的两侧,则a的取值范围是(  )
A.-2<a<1B.a<-2或a>1C.-1<a<2D.a<-1或a>2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex-m,g(x)=ln(x+m),其中m>0
(1)若P(x0,y0)是两个函数图象上的一个公共点,求证:x0=y0
(2)若P(x0,y0)是两个函数图象上唯一的公共点,求实数m,x0的值;
(3)若两个函数图象无公共点,试问存在几条直线与它们都相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$上的点到直线x-2y+4$\sqrt{2}$=0的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆O:x2+y2=1,圆C:(x-3)2+(y-4)2=16,则两圆的位置关系为相外切.(从相离、相内切、相外切、相交中选择一个正确答案)

查看答案和解析>>

同步练习册答案