精英家教网 > 高中数学 > 题目详情
6.下列四个命题中真命题为(  )
A.lg(x2+1)≥0B.5≤2C.若x2=4,则x=2D.若x<2,则$\frac{1}{x}$>$\frac{1}{2}$

分析 根据对数函数的图象和性质,可判断A;根据5>2,可判断B;将x2=4得,x=±2,可判断C;根据$\frac{1}{x}$>$\frac{1}{2}$?0<x<2,可判断D.

解答 解:x2+1≥1恒成立,故lg(x2+1)≥0恒成立,故A正确;
5≤2恒不成立,故B错误;
若x2=4,则x=±2,故C错误;
若0<x<2,则$\frac{1}{x}$>$\frac{1}{2}$,但x<0时,$\frac{1}{x}$<$\frac{1}{2}$,故D错误;
故选:A

点评 本题以命题的真假判断与应用为载体,考查了对数函数的图象和性质,不等式的基本性质等知识点,难度基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于(  )
A.40cm3B.30cm3C.20cm3D.10cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率为$\frac{\sqrt{3}}{2}$,且点(-$\sqrt{3}$,$\frac{1}{2}$)在椭圆C上.
(1)求椭圆C的方程;
(2)直线l与椭圆C交于点P,Q,线段PQ的中点为H,O为坐标原点且OH=1,求△POQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设x,y∈[0,1],则满足y>$\sqrt{1-{x}^{2}}$的概率为(  )
A.1-$\frac{π}{4}$B.$\frac{1}{2}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某航运公司有6艘可运载30吨货物的A型货船与5艘可运载50吨货物的B型货船,现有每天至少运载900吨货物的任务,已知每艘货船每天往返的次数为A型货船4次和B型货船3次,每艘货船每天往返的成本费为A型货船160元,B型货船252元,那么,每天派出A型货船和B型货船各多少艘,公司所花的成本费最低?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=2x3-3x2+$\frac{3}{2}$,则g($\frac{1}{100}$)+g($\frac{2}{100}$)+…+g($\frac{99}{100}$)=(  )
A.100B.99C.50D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的函数f(x)满足f(x)=f(-x),且当x∈(-∞,0)时,f(x)+xf'(x)<0成立,若a=(20.1)•f(20.1),b=(ln2)•f(ln2),$c=({log_2}\frac{1}{8})•f({log_2}\frac{1}{8})$,则a,b,c的大小关系是(  )
A.a>b>cB.c>b>aC.c<a<bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数$f(x)=\frac{1}{2}{x^2}-(a+1)x+alnx,a>0$.
(1)求函数f(x)的单调区间;
(2)讨论函数f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在区间[0,1]上任取两个实数a,b,则函数f(x)=x2+ax+b2无零点的概率为(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案