精英家教网 > 高中数学 > 题目详情

【题目】如图,在△ABC中,∠C=60°,D是BC上一点,AB=31,BD=20,AD=21.
(1)求cos∠B的值;
(2)求sin∠BAC的值和边BC的长.

【答案】
(1)在△ABC中,cosB= = =
(2)0°<B<180°,由(1)可得:sinB= =

∴sin∠BAC=sin[180°﹣(B+60°)]=sin(B+60°)=sinBcos60°+cosBsin60°= + =

在△ABC中,由正弦定理可得: =

∴BC= = =35


【解析】(1)利用余弦定理可得cosB= .(2)0°<B<180°,由(1)可得:sinB= = ,可得sin∠BAC=sin[180°﹣(B+60°)]=sin(B+60°).在△ABC中,由正弦定理可得: = ,即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面平面,四边形和四边形都是正方形,且边长为的中点.

(1)求证:直线平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(14分)在四棱锥PABCD中,ABCACD=90°BACCAD=60°PA平面ABCDEPD的中点,PA=2AB=2.

)求四棱锥PABCD的体积V

)若FPC的中点,求证PC平面AEF

)求证CE平面PAB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
已知函数f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足a1+3a2+…+(2n﹣1)an=2n.(12分)
(1)求{an}的通项公式;
(2)求数列{ }的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x+1)ex和函数g(x)=(ex﹣a)(x﹣1)2(a>0)(e为自然对数的底数).
(1)求函数f(x)的单调区间;
(2)判断函数g(x)的极值点的个数,并说明理由;
(3)若函数g(x)存在极值为2a2 , 求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形中,ABCD,且.现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,如图2.

(Ⅰ)求证:BC⊥平面DBE

(Ⅱ)求点D到平面BEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(0,2)的直线与椭圆C:交于P,Q两点.

(1)若直线的斜率为k,求k的取值范围;

(2)若以PQ为直径的圆经过点E(1,0),求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案