精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=x2+2ax-3在[2,3]上单调,则实数a取值范围是a≤-3,或a≥-2.

分析 若函数f(x)=x2+2ax-3在[2,3]上单调,则区间在对称x=-a的同一侧,进而得到答案.

解答 解:函数f(x)=x2+2ax-3的图象是开口朝上,且以直线x=-a为对称轴的抛物线,
若函数f(x)=x2+2ax-3在[2,3]上单调,
则-a≤2,或-a≥3,
解得:a≤-3,或a≥-2,
故答案为:a≤-3,或a≥-2

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),曲线C2的极坐标方程为ρcosθ-ρsinθ-4=0.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)设P为曲线C1上一点,求点P到曲线C2的距离|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.观察下列各式:
C${\;}_{1}^{0}$=40
C${\;}_{3}^{0}$+C${\;}_{3}^{1}$=41
C${\;}_{5}^{0}$+C${\;}_{5}^{1}$+C${\;}_{5}^{2}$=42
C${\;}_{7}^{0}$+C${\;}_{7}^{1}$+C${\;}_{7}^{2}$+C${\;}_{7}^{3}$=43

照此规律,当n∈N*时,
C${\;}_{2n-1}^{0}$+C${\;}_{2n-1}^{1}$+C${\;}_{2n-1}^{2}$+…+C${\;}_{2n-1}^{n-1}$=(  )
A.4nB.4n-1C.42n-1D.42n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正三棱锥P-ABC的各棱长都为2,底面为ABC,棱PC的中点为M,从A点出发,在三棱锥P-ABC的表面运动,经过棱PB到达点M的最短路径之长为$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的最大值与最小值
(1)y=2sinx-3,x∈R
(2)y=$\frac{7}{4}$+sinx-sin2x,x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|(m-1)x2+3x-2=0}.
(1)若集合A为两个元素的集合,试求实数m的范围;
(2)是否存在这样的实数m,使得集合A有仅有两个子集?若存在,求出所有的m的值组成的集合M;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若集合M⊆N,则以下集合中一定是空集的是(  )
A.M∩NB.M∩∁UNC.UM∩ND.M∪N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设矩阵M=$|\begin{array}{l}{m}&{2}\\{2}&{-3}\end{array}|$的一个特征值λ对应的特征向量为$[\begin{array}{l}{1}\\{-2}\end{array}]$,求m与λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点分别是A1,A2,M是双曲线上任意一点,若直线MA1,MA2的斜率之积等于2,则该双曲线的离心率是$\sqrt{3}$.

查看答案和解析>>

同步练习册答案