精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是边长为1的正方形,,且的中点.

I)求证:平面

II)求直线与平面所成角的正弦值.

【答案】I)详见解析(II

【解析】

试题分析:I)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与论证,往往需要利用平几知识,如本题利用三角形中位线得:连接于点,则II)求线面角,一般利用空间向量,即先根据条件建立恰当空间直角坐标系,设立各点坐标,列方程组解面的法向量,利用向量数量积求向量夹角余弦值,最后根据线面角与向量夹角互余关系求线面角的正弦值

试题解析:解:(I)连接,交于点,连接,则的中点.

的中点,的中位线,

,又平面平面

平面.

II平面

如图,以为原点,分别以轴,建立空间直角坐标系,

设平面的一个法向量为,由得,

,令,则

,又

直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1所示,在直角梯形的中点的交点.将沿折起到△的位置如图2所示.

1证明:平面

2若平面平面求平面与平面所成锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设L为曲线Cy在点(1,0)处的切线.

(1)L的方程;

(2)证明:除切点(1,0)之外,曲线C在直线L的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】简阳羊肉汤已入选成都市级非遗项目,成为简阳的名片。当初向各地作了广告推广,同时广告对销售收益也有影响。在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

(Ⅰ)根据频率分布直方图,计算图中各小长方形的宽度;

(Ⅱ)根据频率分布直方图,估计投入4万元广告费用之后,并将各地销售收益的平均值(以各组的区间中点值代表该组的取值);

(Ⅲ)按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入x(单位:万元)

1

2

3

4

5

销售收益y(单位:百万元)

2

3

2

7

表中的数据显示,之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算关于的回归方程.回归直线的斜率和截距的最小二乘估计公式分别为 ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最大值和最小值;

(2)若在区间上,函数的图像恒在直线下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求过点且在两个坐标轴上截距相等的直线方程。

(2)已知圆心为的圆经过点,且圆心在直线上,求圆心为的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2=9A(-5,0)直线l:x-2y=0.

(1)求与圆C相切且与直线l垂直的直线方程;

(2)在直线OA上(O为坐标原点)存在定点B(不同于点A)满足:对于圆C上任一点P都有一常数,试求所有满足条件的点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)对于曲线上的不同两点,如果存在曲线上的点,且使得曲线在点处的切线,则称为弦的伴随直线,特别地,当时,又称—伴随直线.

①求证:曲线的任意一条弦均有伴随直线,并且伴随直线是唯一的;

②是否存在曲线,使得曲线的任意一条弦均有—伴随直线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴一个端点到右焦点的距离为.

1 求椭圆的方程;

2 设直线与椭圆交于两点,坐标原点到直线的距离为,求面积的最大值.

查看答案和解析>>

同步练习册答案