精英家教网 > 高中数学 > 题目详情

【题目】近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设多个分支机构,需要国内公司外派大量后、后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从后和后的员工中随机调查了位,得到数据如下表:

愿意被外派

不愿意被外派

合计

合计

/p>

(Ⅰ)根据调查的数据,是否有以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;

(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排名参与调查的后、后员工参加.后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为,求的概率

参考数据:

(参考公式:,其中).

【答案】(1)有90% 以上的把握(2)

【解析】试题分析:(1)本问考查独立性检验,根据列联表中的数据,计算,并将所得结果与所给表格中的临界值进行对照,从而判断有多大把握认为是否愿意被外派与年龄有关”;(2)本问考查古典概型概率公式问题,关键是确定基本事件空间总数及事件A所包含的基本事件个数,基本事件空间可以采用列表法、树状图法,列举法等表示,本问中愿意被外派人数不少于不愿意被外派人数愿意被外派人数为人或,确定其包含的基本事件个数,就可以求出从其概率.

试题解析:(Ⅰ)

所以有90% 以上的把握认为“是否愿意被外派与年龄有关”.

(Ⅱ)设后员工中报名参加活动有愿意被外派的人为,不愿意被外派的人为,现从中选人,如图表所示,用表示没有被选到,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(可以以不同形式列举出15种情况)

则“愿意被外派人数不少于不愿意被外派人数”即“愿意被外派人数为人或人”

种情况,则其概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点,其中为常数, 为自然对数的底数.

(1)求实数的取值范围;

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
①三点确定一个平面;
②三条两两相交的直线确定一个平面;
③在空间上,与不共面四点A,B,C,D距离相等的平面恰有7个;
④两个相交平面把空间分成四个区域.
其中真命题的序号是 (写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已{x1 , x2 , x3 , x4}{x>0|(x﹣3)sinπx=1},则x1+x2+x3+x4的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体由一个正三棱柱截去一个三棱锥而得, 平面 的中点, 为棱上一点,且平面.

(1)若在棱上,且,证明: 平面

(2)过作平面的垂线,垂足为,确定的位置(说明作法及理由),并求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设多个分支机构,需要国内公司外派大量后、后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从后和后的员工中随机调查了位,得到数据如下表:

愿意被外派

不愿意被外派

合计

合计

(Ⅰ)根据调查的数据,是否有以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;

(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排名参与调查的后、后员工参加.后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为,求的概率

参考数据:

(参考公式:,其中).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域D,如果存在正实数m,使得对任意x∈D,都有f(x+m)>f(x),则称f(x)为D上的“m型增函数”.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x﹣a|﹣a(a∈R).若f(x)为R上的“20型增函数”,则实数a的取值范围是(  )
A.a>0
B.a<5
C.a<10
D.a<20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,⊙O与⊙O′相交于AB两点,过A引直线CDEF分别交两圆于点CDEFECDF的延长线相交于点P,求证:∠P+∠CBD=180°.

查看答案和解析>>

同步练习册答案