精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,曲线C的参数方程为为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.

1)求曲线C的极坐标方程和直线l的直角坐标方程;

2)若射线与曲线C交于点A(不同于极点O,与直线l交于点B,求的最大值.

【答案】1,直线;(2

【解析】

1)由消参法把参数方程化为普通方程,再由公式进行直角坐标方程与极坐标方程的互化;

2)由极径的定义可直接把代入曲线和直线的极坐标方程,求出极径,把比值化为的三角函数,从而可得最大值、

1)消去参数可得曲线的普通方程是,即,代入,即曲线的极坐标方程是

,化为直角坐标方程为

2)设,则

时,取得最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过抛物线y2=4x的焦点的直线l与抛物线交于AB两点,设点M30.若△MAB的面积为,则|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为,且满足.

1)求数列{an}的通项公式;

2)记.

①求Tn

②求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)若函数的图象在点处的切线的斜率为1,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是2020215日至32日武汉市新增新冠肺炎确诊病例的折线统计图.则下列说法不正确的是(

A.2020219日武汉市新增新冠肺炎确诊病例大幅下降至三位数

B.武汉市在新冠肺炎疫情防控中取得了阶段性的成果,但防控要求不能降低

C.2020219日至32日武汉市新增新冠肺炎确诊病例低于400人的有8

D.2020215日到32日武汉市新增新冠肺炎确诊病例最多的一天比最少的一天多1549

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)当时,求证:上单调递减;

2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所得六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.
(1)求该函数的最小正周期和最小值;
(2),求该函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】房屋的天花板上点处有一光源,在地面上的射影为,在地面上放置正棱锥,底面接触地面.已知正四棱锥的高为,底面的边长为与正方形的中心的距离为,又长为,则棱锥影子(不包括底面)的面积的最大值为________

查看答案和解析>>

同步练习册答案