精英家教网 > 高中数学 > 题目详情
若曲线f(x)=asinx+1在x=0处的切线斜率为2,则(ax2-
1
x
5展开式中x的系数为(  )
A、40B、10
C、-10D、-40
考点:二项式系数的性质
专题:二项式定理
分析:根据函数在某一点的导数的几何意义求出a,再在二项式展开式的通项公式,再令x的幂指数等于1,求得r的值,即可求得展开式中x的系数.
解答: 解:由题意可得f′(0)=acos0=a=2,故(ax2-
1
x
5 =(2x2-
1
x
5展开式的通项公式为
Tr+1=
C
r
5
•(-1)r•25-r•x10-3r
令10-3r=1,求得 r=3,故(ax2-
1
x
5展开式中x的系数为-
C
3
5
•22=-40,
故选:D.
点评:本题主要考查函数在某一点的导数的几何意义,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当a=
2
π
2
0
4-x2
dx时,二项式(x2-
a
x
6展开式中的x3项的系数为(  )
A、-20B、20
C、-160D、160

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的是一个算法的流程图,当输入x的值为2014时,输出y的值为 (  )
A、1
B、
1
3
C、
1
9
D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=4sinωx•sin2
π
4
+
ωx
2
)+cos2ωx(ω>0)在[-
π
2
3
]上是增函数,则ω的取值范围是(  )
A、(0,1]
B、(0,
3
4
]
C、[1,+∞)
D、[
3
4
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图的程序框图,运行相应的程序,若输出S=
2013
2014
,则判断框内应填入(  )
A、i≥2014
B、i≥2015
C、i>2014
D、i>2015

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
2i
1+i
(i是虚数单位)在复平面所对应的点位于的象限(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

若某几何体的三视图(单位:cm)如图所示,则此几何体的体积为(  )
A、30B、24C、10D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
6
+α)=3,α为锐角,则cos(
π
3
-α)=(  )
A、
3
10
10
B、-
3
10
10
C、
10
10
D、-
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为sn,a1=1,当n∈N+有an+1=
Sn
n
+n+1.
(1)求{an}的通项公式
(2)记bn=
1
an
,求证:b1+b2+…+bn
2n-1

查看答案和解析>>

同步练习册答案