精英家教网 > 高中数学 > 题目详情

【题目】a,b,c分别是的三条边,且.我们知道,如果为直角三角形,那么(勾股定理).反过来,如果,那么为直角三角形(勾股定理的逆定理).由此可知,为直角三角形的充要条件是.请利用边长a,b,c分别给出为锐角三角形和钝角三角形的一个充要条件,并证明.

【答案】为锐角三角形的充要条件是.为钝角三角形的充要条件是.证明见解析

【解析】

根据勾股定理易得为锐角三角形的充要条件是.为钝角三角形的充要条件是.再分别证明充分与必要性即可.

解:(1)设a,b,c分别是的三条边,且,为锐角三角形的充要条件是.

证明如下:必要性:在中,是锐角,作,D为垂足,如图(1).

显然

,即.

充分性:在中,,不是直角.

假设为钝角,如图(2).作,交BC延长线于点D.

.

,与“”矛盾.

为锐角,即为锐角三角形.

(2)设a,b,c分别是的三条边,且,为钝角三角形的充要条件是.

证明如下:必要性:在中,为钝角,如图(2),显然:

.即.

充分性:在中,,

不是直角,假设为锐角,如图(1),

.即,这与“”矛盾,从而必为钝角,即为钝角三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,为边的中点.将△沿翻折,得到四棱锥.设线段的中点为,在翻折过程中,有下列三个命题:

总有平面

三棱锥体积的最大值为

存在某个位置,使所成的角为

其中正确的命题是____.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若函数上不单调,求实数a的取值范围;

(2)求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数Fx=min{2|x1|x22ax+4a2}

其中min{pq}=

)求使得等式Fx=x22ax+4a2成立的x的取值范围;

)()求Fx)的最小值ma);

)求Fx)在区间[0,6]上的最大值Ma.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(Ⅰ)求证:AA1⊥平面ABC;

(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】党的十九大报告指出,建设教育强国是中华民族伟大复兴的基础工程,必须把教育事业放在优先位置,深化教育资源的均衡发展.现有4名男生和2名女生主动申请毕业后到两所偏远山区小学任教.将这6名毕业生全部进行安排,每所学校至少安排2名毕业生,则每所学校男女毕业生至少安排一名的概率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的飞速发展,人们的生活发生了很大变化,其中无现金支付是一个显著特征,某评估机构对无现金支付的人群进行网络问卷调查,并从参与调查的数万名受访者中随机选取了300人,把这300人分为三类,即使用支付宝用户、使用微信用户、使用银行卡用户,各类用户的人数如图所示,同时把这300人按年龄分为青年人组与中年人组,制成如图所示的列联表:

支付宝用户

非支付宝用户

合计

中老年

90

青年

120

合计

300

(1) 完成列联表,并判断是否有99%的把握认为使用支付宝用户与年龄有关系?

(2)把频率作为概率,从所有无现金支付用户中(人数很多)随机抽取3人,用表示所选3人中使用支付宝用户的人数,求的分布列与数学期望.

附:

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场准备在今年的“五一假”期间对顾客举行抽奖活动,举办方设置了两种抽奖方案,方案的中奖率为,中奖可以获得分;方案的中奖率为,中奖可以获得分;未中奖则不得分,每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,并凭分数兑换奖品,

1)若顾客甲选择方案抽奖,顾客乙选择方案抽奖,记他们的累计得分为,若的概率为,求

2)若顾客甲、顾客乙两人都选择方案或都选择方案进行抽奖,问:他们选择何种方案抽奖,累计得分的均值较大?

查看答案和解析>>

同步练习册答案