精英家教网 > 高中数学 > 题目详情

【题目】如表是我国2012年至2018年国内生产总值(单位:万亿美元)的数据:

年份

2012

2013

2014

2015

2016

2017

2018

年份代号

1

2

3

4

5

6

7

国内生产总值

(单位:万亿美元)

8.5

9.6

10.4

11

11.1

12.1

13.6

(1)从表中数据可知线性相关性较强,求出以为解释变量为预报变量的线性回归方程;

(2)已知美国2018年的国内生产总值约为20.5万亿美元,用(1)的结论,求出我国最早在那个年份才能赶上美国2018年的国内生产总值?

参考数据:

参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:

.

【答案】(1);(2)2028.

【解析】

1)根据表中给出的数据计算出,再计算出,从而得到回归方程;(2)根据(1)中所得的回归方程,令,得到的范围,从而得到答案.

(1)

.

所以回归方程为.

(2)由(1)可知

,得

解得

即要在第17个年份才能超过20.5万亿.

所以用线性回归分析我国最早也要在2028年才能赶上美国2018年的国内生产总值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,点C在以AB为直径的圆上运动,PA⊥平面ABC,且PAACDE分别是PCPB的中点.

1)求证:PC⊥平面ADE

2)若二面角CAEB60°,求直线AB与平面ADE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究所开发了一种新药,测得成人注射该药后血药浓度y(微克/毫升)与给药时间x(小时)之间的若干组数据,并由此得出yx之间的一个拟合函数y400.6x0.62x)(x[012]),其简图如图所示.试根据此拟合函数解决下列问题:

1)求药峰浓度与药峰时间(精确到0.01小时),并指出血药浓度随时间的变化趋势;

2)求血药浓度的半衰期(血药浓度从药峰浓度降到其一半所需要的时间)(精确到0.01小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代码

1

2

3

4

5

6

11

13

16

15

20

21

(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;

(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:

车型 报废年限

1年

2年

3年

4年

总计

10

30

40

20

100

15

40

35

10

100

经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?

参考数据:.

参考公式:相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,点在抛物线上,且

1)求抛物线的方程;

2)过点作互相垂直的两条直线,与抛物线分别相交于点分别为弦的中点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案①:规定每日底薪50元,快递业务每完成一单提成3元;方案②:规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图.

(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;

(2)若骑手甲、乙选择了日工资方案①,丙、丁选择了日工资方案②.现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案①的概率;

(3)若从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为(为参数,),以坐标原点为极点,以轴的 非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)若曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:ab0)的两个焦点分别为F1(-0)、F20.M10)与椭圆短轴的两个端点的连线相互垂直.

1)求椭圆C的方程;

2)已知点N的坐标为(32),点P的坐标为(mn)(m≠3.过点M任作直线l与椭圆C相交于AB两点,设直线ANNPBN的斜率分别为k1k2k3,若k1k32k2,试求mn满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有_________(填具体数字)

查看答案和解析>>

同步练习册答案