精英家教网 > 高中数学 > 题目详情

【题目】(Ⅰ)求不等式﹣x2﹣2x+3<0的解集(用集合或区间表示) (Ⅱ)求不等式|x﹣3|<1的解集(用集合或区间表示)

【答案】解:(Ⅰ)不等式﹣x2﹣2x+3<0可化为. x2+2x﹣3>0,…
即(x+3)(x﹣1)>0,
解得或x<﹣3或x>1,
所以不等式的解集为{x|x<﹣3或x>1};
(Ⅱ)不等式|x﹣3|<1可化为
﹣1<x﹣3<1,
解得2<x<4,
所以不等式的解集为{x|2<x<4}.
【解析】(Ⅰ)根据一元二次不等式的解法步骤求解即可;(Ⅱ)利用绝对值的定义化简不等式,求解即可.
【考点精析】本题主要考查了解一元二次不等式的相关知识点,需要掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线与抛物线 相交于 两点, 是线段的中点,过轴的垂线交于点.

(Ⅰ)证明:抛物线在点处的切线与平行;

(Ⅱ)是否存在实数使?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂每日生产一种大型产品1件,每件产品的投入成本为2000元.产品质量为一等品的概率为,二等品的概率为,每件一等品的出厂价为10000元,每件二等品的出厂价为8000元.若产品质量不能达到一等品或二等品,除成本不能收回外,没生产一件产品还会带来1000元的损失.

(1)求在连续生产3天中,恰有一天生产的两件产品都为一等品的的概率;

(2)已知该厂某日生产的2件产品中有一件为一等品,求另一件也为一等品的概率;

(3)求该厂每日生产该种产品所获得的利润(元)的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为自然对数的底数),.

(1)若的极值点,且直线分别与函数的图象交于,求两点间的最短距离;

(2)若时,函数的图象恒在的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程x2+y2﹣ax+y+1=0表示圆;命题q:方程2ax+(1﹣a)y+1=0表示斜率大于1的直线,若p∨q为真命题,p∧q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进行统计分析,得到频率分布表如下

等级

1

2

3

4

5

频率

0.05

m

0.15

0.35

n


(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,F1 , F2是双曲线C: (a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若△ABF2为等边三角形,则双曲线的离心率为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知条件p:x2﹣3x﹣4≤0;条件q:x2﹣6x+9﹣m2≤0,若p是q的充分不必要条件,则m的取值范围是(
A.[﹣1,1]
B.[﹣4,4]
C.(﹣∞,﹣1]∪[1,+∞)
D.(﹣∞,﹣4]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业开发一种新产品,现准备投入适当的广告费,对产品进行促销,在一年内,预计年销量Q(万件)与广告费x(万件)之间的函数关系为 ,已知生产此产品的年固定投入为3万元,每年产1万件此产品仍需要投入32万元,若年销售额为(32Q+3)150%+x50%,而当年产销量相等.
(1)试将年利润P(万件)表示为年广告费x(万元)的函数;
(2)当年广告费投入多少万元时,企业年利润最大?

查看答案和解析>>

同步练习册答案