精英家教网 > 高中数学 > 题目详情
已知函数g(x)=
x+2,x>-
1
2
-x-
1
2x
,-
2
2
<x≤-
1
2
2
,x≤-
2
2
,若g(a)≥g(
1
a
)
,则实数a的取值范围是
[-
2
,0)∪[1,+∞)
[-
2
,0)∪[1,+∞)
分析:根据分段函数g(x)的解析式作出其图象,如图所示.再对x进行分类讨论:①当x>-
2
2
时,g(x)是增函数,若g(a)≥g(
1
a
)
;②当x≤-
2
2
时,g(x)=
2
,若g(a)≥g(
1
a
)
,得出关于a的不等关系,最后综上①②所述,即可得出实数a的取值范围.
解答:解:根据函数g(x)的解析式作出其图象,如图所示.
①当x>-
2
2
时,g(x)是增函数,
g(a)≥g(
1
a
)

a≥
1
a
1
a
>-
2
2
,解得:-1≤a<0或a≤≥1;
②当x≤-
2
2
时,g(x)=
2

g(a)≥g(
1
a
)

a≤-
2
2
1
a
≤-
2
2
,解得:-
2
≤a≤-
2
2

综上①②所述,实数a的取值范围是[-
2
,0)∪[1,+∞)

故答案为:[-
2
,0)∪[1,+∞)
点评:本小题主要考查函数单调性的应用、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
ax2
+bx(a≠0)
(Ⅰ)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(Ⅱ)在(Ⅰ)的结论下,设φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;
(Ⅲ)设函数f(x)的图象C1与函数g(x)的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封一模)已知函数f(x)=
x+1ex

(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设函数g(x)=xf(x)+tf'(x)+e-x(t∈R).是否存在实数a、b、c∈[0,1],使得g(a)+g(b)<g(c)?若存在,求实数t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
,g(x)=x+a(a>0)
(1)求a的值,使点M(f(x),g(x))到直线x+y-1=0的最短距离为
2

(2)若不等式|
f(x)-ag(x)
f(x)
|≤1
在x∈[1,4]恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a
1
2
且a≠1.条件p:函数f(x)=log(2a-1)x在其定义域上是减函数;条件q:函数g(x)=
x+|x-a|-2
的定义域为R.如果p∨q为真,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案