【题目】已知函数f(x)= x2﹣alnx+ (a∈R) (Ⅰ)求函数f(x)单调区间;
(Ⅱ)若a=﹣1,求证:当x>1时,f(x)< x3 .
【答案】解:(Ⅰ)f(x)的定义域为x>0 若a≤0时,f'(x)≥0恒成立,即f(x)的单调区间为(0,+∞)
若a>0时,令f'(x)>0,得
即f(x)的单调区间为 ,减区间为
(Ⅱ)证明:设
则
∴F(x)在(1,+∞)上为增函数,且
即F(x)>0在(1,+∞)上恒成立
∴当x>1,
【解析】(Ⅰ)求导数,分类讨论,利用导数的正负求函数f(x)单调区间;(Ⅱ)设 ,证明F(x)在(1,+∞)上为增函数,即可得出结论.
【考点精析】利用利用导数研究函数的单调性和函数的最大(小)值与导数对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】曲线的参数方程为 (为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)写出的直角坐标方程,并且用 (为直线的倾斜角, 为参数)的形式写出直线的一个参数方程;
(2) 与是否相交,若相交求出两交点的距离,若不相交,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC,E为BC的中点,F在棱AC上,且AF=3FC,
(1)求证:AC⊥平面DEF;
(2)求平面DEF与平面ABD所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知0<k<4,直线l1:kx﹣2y﹣2k+8=0和直线l:2x+k2y﹣4k2﹣4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x﹣1),g(x)=loga(3﹣x)(a>0且a≠1)
(1)求函数h(x)=f(x)﹣g(x)的定义域;
(2)利用对数函数的单调性,讨论不等式f(x)≥g(x)中x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明CD⊥AE;
(2)证明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log (3x2﹣ax+5)在[﹣1,+∞)上单调递减,则实数a的取值范围是( )
A.[﹣8,﹣6]
B.(﹣8,﹣6]
C.(﹣∞,﹣8)∪(﹣6,+∞)
D.(﹣∞,﹣6]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过双曲线 =1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为坐标原点,若 = ( + ),则双曲线的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com