精英家教网 > 高中数学 > 题目详情
(本题满分12分)
是定义在上的奇函数,函数的图象关于轴对称,且当时,
(I)求函数的解析式;
(II)若对于区间上任意的,都有成立,求实数的取值范围.
(1)
(2),实数的取值范围为
本题主要考查函数恒成立问题以及函数解析式的求解及常用方法和奇偶函数图象的对称性,是对函数知识的综合考查,属于中档题.
(1)先利用函数g(x)与f(x)的图象关于y轴对称得:f(x)的图象上任意一点P(x,y)关于y轴对称的对称点Q(-x,y)在g(x)的图象上;然后再利用x∈[-1,0)时,-x∈(0,1],则f(x)=g(-x)求出一段解析式,再利用定义域内有0,可得f(0)=0;最后利用其为奇函数可求x∈(0,1]时对应的解析式,综合即可求函数f(x)的解析式;
(2)先求出f(x)在(0,1]上的导函数,利用其导函数求出其在(0,1]上的单调性,进而求出其最大值,只须让起最大值与1相比即可求出实数a的取值范围
解:(1)∵的图象与的图象关于y轴对称,
的图象上任意一点关于轴对称的对称点的图象上.
时,,则.    2分
上的奇函数,则.                  3分
时,.    5分
                          6分
(2)由已知,
①若恒成立,则
此时,上单调递减,
的值域为矛盾.                             8分
②当时,令
∴当时,单调递减,
时,单调递增,
.              10分
,得
综上所述,实数的取值范围为.                               12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设函数
(1)若处取得极值,求的值;
(2)若在定义域内为增函数,求的取值范围;
(3)设,当时,
求证:① 在其定义域内恒成立;
求证:②

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中
(1)当时,判断函数在定义域上的单调性;
(2)求的极值点;
(3)证明对任意的正整数,不等式都成立。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数.
(1)若的两个极值点为,且,求实数的值;
(2)是否存在实数,使得上的单调函数?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数 。
如果,函数在区间上存在极值,求实数a的取值范围;
时,不等式恒成立,求实数k的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数.
(1)求的极值;
(2)若上为单调递增函数,求的取值范围;
(3)设,若在是自然对数的底数)上至少存在一个,使得成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)·g(x)+f(x)·g′(x)>0,且f(-3)·g(-3)=0,则不等式f(x)·g(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)
B.(-3,0)∪ (0,3)
C.(-∞,-3)∪(3,+∞)
D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,则实数的取值范围是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)设 
(1)若上递增,求的取值范围;
(2)若上的存在单调递减区间 ,求的取值范围

查看答案和解析>>

同步练习册答案