精英家教网 > 高中数学 > 题目详情
10.判断下列函数的奇偶性:
(1)f(x)=x${\;}^{\frac{3}{2}}$;
(2)f(x)=(x-1)${\;}^{-\frac{2}{3}}$;
(3)f(x)=(x-1)0

分析 根据函数奇偶性的定义判断即可.

解答 解:(1)f(x)=${x}^{\frac{3}{2}}$=$\sqrt{{x}^{3}}$,∴x>0,
定义域不关于原点对称,
故函数f(x)是非奇非偶函数;
(2)f(x)=${(x-1)}^{-\frac{2}{3}}$=$\frac{1}{{(x-1)}^{\frac{2}{3}}}$=$\frac{1}{\root{3}{{(x-1)}^{2}}}$,
∴x≠1,
定义域不关于原点对称,
故函数f(x)是非奇非偶函数;
(3)∵f(x)=(x-1)0
∴x≠1,
定义域不关于原点对称,
故函数f(x)是非奇非偶函数.

点评 本题考查了函数的奇偶性问题,判断函数的奇偶性需先观察函数的定义域是否关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2,侧棱长为1.
(1)建立适当的空间直角坐标系,并写出点A、C、B1的坐标.
(2)判断△ACB1是否为直角三角形?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知函数y=logax,y=logbx,y=logcx,y=logdx的图象分别是曲线C1,C2,C3,C4,试判断0,1,a,b,c,d的大小关系,并用“<”连接起来.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简:
(1)2(5$\overrightarrow{a}$-3$\overrightarrow{b}$)+3($\overrightarrow{a}$-2$\overrightarrow{b}$);
(2)2($\overrightarrow{a}$+3$\overrightarrow{b}$)-4(3$\overrightarrow{a}$+5$\overrightarrow{b}$);
(3)$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$)+$\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{b}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.y=2sin(x-$\frac{π}{3}$),x∈[0,π],
当x=$\frac{5π}{6}$时,y取最大值2,
当x=0时,y取最小值-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设全集U={0,1,2,3,4,5,6,7},A={2,3,4,5,6},则∁UA=(  )
A.{0,2,3,4,5,6}B.{2,3,4,5,6}C.{0,1,7}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\sqrt{1-x}$的图象与它反函数的图象的交点共有3个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若点P(2,m)到直线3x-4y+2=0的距离为4,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若函数f(x)=|x2-2x|-a没有零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案