精英家教网 > 高中数学 > 题目详情
如图,在直-棱柱ABO-A′B′O′中,OO′=4,OA=4,OB=3,∠AOB=90°,D是线段A′B′的中点,P是侧棱BB′上的一点,若OP⊥BD,求OP与底面AOB所成角的大小(结果用反三角函数值表示)
精英家教网
分析:如图,以O点为原点建立空间直角坐标系.求出B,D.设P(3,0,z),推出
BD
={ -
3
2
 , 2 , 4 }

OP
={ 3 , 0 , z }
.利用
BD
OP
=-
9
2
+4z=0
.z=
9
8
.说明∠POB是OP与底面AOB所成的角,然后求出,
∠POB=arctan
3
8
解答:精英家教网解:如图,以O点为原点建立空间直角坐标系.
由题意,有B(3,0,0),D ( 
3
2
 , 2 , 4 )

设P(3,0,z),则
BD
={ -
3
2
 , 2 , 4 }

OP
={ 3 , 0 , z }

∵BD⊥OP,∴
BD
OP
=-
9
2
+4z=0
.z=
9
8

∵BB′⊥平面AOB,
∴∠POB是OP与底面AOB所成的角.tan∠POB=
3
8

∠POB=arctan
3
8
点评:本题是基础题,利用空间直角坐标系通过向量的计算,考查直线与平面所成角的求法,空间想象能力,计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案