精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程选讲

在平面直角坐标系中,以原点为极点,以轴非负半轴为极轴建立极坐标系, 已知曲线的极坐标方程为,直线的极坐标方程为

(Ⅰ)写出曲线和直线的直角坐标方程;

(Ⅱ)设直线过点与曲线交于不同两点的中点为的交点为,求

【答案】(Ⅰ)C: ;直线的直角坐标方程 (Ⅱ)8

【解析】

(Ⅰ)由极坐标方程与直角坐标方程的互化公式可直接得出结果;

(Ⅱ)先写出直线的参数方程,代入曲线的普通方程,得到,再由直线的参数方程代入,得到,进而可得出结果.

(Ⅰ)曲线的直角坐标方程为:

的直角坐标方程为:

(Ⅱ)直线的参数方程为参数),

将其代入曲线的普通方程并整理得

两点的参数分别为,则

因为的中点,故点的参数为

点的参数分别为,把代入整理得

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知可以用一系列半径为且彼此不重叠的圆盘覆盖平面上的所有格点在平面直角坐标系中,横、纵坐标都是整数的点为格点),______4 (填“大于~小于”或等于”).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数a为常数,且)在处取得极值.

1)求实数a的值,并求的单调区间;

2)关于x的方程上恰有1个实数根,求实数b的取值范围;

3)求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线的极坐标方程为.

(1)把曲线的方程化为普通方程,的方程化为直角坐标方程

(2)若曲线,相交于两点,的中点为,过点作曲线的垂线交曲线两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过点,且在点处的切线方程为.

(1)求函数的解析式;

(2)求函数的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某一段海底光缆出现故障,需派人潜到海底进行维修,现在一共有甲、乙、丙三个人可以潜水维修,由于潜水时间有限,每次只能派出一个人,且每个人只派一次,如果前一个人在一定时间内能修好则维修结束,不能修好则换下一个人.已知甲、乙、丙在一定时间内能修好光缆的概率分别为,且各人能否修好相互独立.

1)若按照丙、乙、甲的顺序派出维修,设所需派出人员的数目为X,求X的分布列和数学期望;

2)假设三人被派出的不同顺序是等可能出现的,现已知丙在乙的下一个被派出,求光缆被丙修好的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的图象与直线ya恰有三个不同的交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放40年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各50人,进行问卷测评,所得分数的频率分布直方图如图所示.规定得分在80分以上为交通安全意识强.

安全意识强

安全意识不强

合计

男性

女性

合计

(Ⅰ)求的值,并估计该城市驾驶员交通安全意识强的概率;

(Ⅱ)已知交通安全意识强的样本中男女比例为4:1,完成2×2列联表,并判断有多大把握认为交通安全意识与性别有关;

(Ⅲ)在(Ⅱ)的条件下,从交通安全意识强的驾驶员中随机抽取2人,求抽到的女性人数的分布列及期望.

附:,其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价(元)

8

8.2

8.4

8.6

8.8

9

销量(件)

90

84

83

80

75

68

1)若回归直线方程,其中;试预测当单价为10元时的销量;

2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

同步练习册答案