精英家教网 > 高中数学 > 题目详情
如图,正方形与梯形所在的平面互相垂直,,,点在线段上.

(I)当点中点时,求证:∥平面
(II)当平面与平面所成锐二面角的余弦值为时,求三棱锥 的体积.
(I)建立空间直角坐标系,证明,进而得证;(II)

试题分析:
(I )以直线DA,BC,DE分别为x轴,y轴,z轴建立空间直角坐标系,
,所以
所以,       2分
是平面的一个法向量,,所以,
所以∥平面.      4分
(II)设,则,又

 得 , 即 
又由题设,是平面的一个法向量,   8分
     10分
即点中点,此时,为三棱锥的高,
.           12分
点评:解决立体几何问题,可以用相关的定理证明,也可以用空间向量证明,利用空间向量也要依据相应的判定定理和性质定理,并且要注意各个角的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(理科)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.

(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3) 若P是棱A1C1上一点,求CP+PB1的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从正方体的八个顶点中任取四个点连线,在能构成的一对异面直线中,其所成的角的度数不可能是
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面


(1)若E是PC的中点,证明:平面
(2)试在线段PC上确定一点E,使二面角P- AB- E的大小为,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在直棱柱中,当底面四边形满足      时,有成立.(填上你认为正确的一个条件即可)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
已知:如图,中,是角平分线。求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两个平面,为两条直线,且,有如下两个命题:
①若;②若. 那么( )
A.①是真命题,②是假命题B.①是假命题,②是真命题
C.①、②都是真命题D.①、②都是假命题

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三个平面,若,且相交但不垂直,分别为内的直线,则(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正三棱柱ABC-A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是______________.

查看答案和解析>>

同步练习册答案