5£®É躯Êýf£¨x£©=$\frac{1}{3}a{x}^{3}+\frac{1}{2}b{x}_{2}+cx£¨a£¬b£¬c¡ÊR£¬a¡Ù0£©$µÄͼÏóÔڵ㣨x£¬f£¨x£©£©´¦µÄÇÐÏßµÄбÂÊΪk£¨x£©£¬ÇÒº¯Êýg£¨x£©=k£¨x£©-$\frac{1}{2}x$Ϊżº¯Êý£®Èôº¯Êýk£¨x£©Âú×ãÏÂÁÐÌõ¼þ£º¢Ùk£¨-1£©=0£»¢Ú¶ÔÒ»ÇÐʵÊýx£¬²»µÈʽk£¨x£©$¡Ü\frac{1}{2}{x}^{2}+\frac{1}{2}$ºã³ÉÁ¢£®
£¨¢ñ£©Çóº¯Êýk£¨x£©µÄ±í´ïʽ£»
£¨¢ò£©É躯Êýh£¨x£©=lnx${\;}^{2}-£¨2m+3£©x+\frac{12f£¨x£©}{x}£¨x£¾0£©$µÄÁ½¸ö¼«Öµµãx1£¬x2£¨x1£¼x2£©Ç¡Îª¦Õ£¨x£©=lnx-sx2-txµÄÁãµã£®µ±m$¡Ý\frac{3\sqrt{2}}{2}$ʱ£¬Çóy=£¨x1-x2£©¦Õ¡ä£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©µÄ×îСֵ£®

·ÖÎö £¨¢ñ£©ÀûÓú¯Êýg£¨x£©=k£¨x£©-$\frac{1}{2}x$Ϊżº¯Êý£¬½áºÏk£¨-1£©=0£¬Çó³öa£¬b£¬c£¬¼´¿ÉÇóº¯Êýk£¨x£©µÄ±í´ïʽ£»
£¨¢ò£©Çó³ö0$£¼\frac{{x}_{1}}{{x}_{2}}¡Ü\frac{1}{2}$£¬y=£¨x1-x2£©¦Õ¡ä£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©=$\frac{2£¨\frac{{x}_{1}}{{x}_{2}}-1£©}{\frac{{x}_{1}}{{x}_{2}}+1}$-$ln\frac{{x}_{1}}{{x}_{2}}$£¬ÔÙ»»Ôª£¬¹¹Ô캯Êý£¬Çóµ¼Êý£¬È·¶¨º¯ÊýµÄµ¥µ÷ÐÔ£¬Çó³öº¯ÊýµÄ×îСֵ£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨¢ñ£©ÓÉÒÑÖª¿ÉµÃk£¨x£©=ax2+bx+c£®
¡ßº¯Êýg£¨x£©=k£¨x£©-$\frac{1}{2}x$Ϊżº¯Êý£¬
¡àax2-bx+c+$\frac{1}{2}$x=ax2+bx+c-$\frac{1}{2}x$£¬
¡à£¨a-$\frac{1}{2}$£©x2+$\frac{1}{2}x$+c-$\frac{1}{2}$¡Ü0ºã³ÉÁ¢£¬
¡à$\left\{\begin{array}{l}{a-\frac{1}{2}£¼0}\\{\frac{1}{4}-4£¨a-\frac{1}{2}£©£¨c-\frac{1}{2}£©¡Ü0}\end{array}\right.$
¡àa=c=$\frac{1}{4}$£®
¡ßk£¨-1£©=0£¬¡àµÃk£¨x£©=$\frac{1}{4}$x2+$\frac{1}{2}$x+$\frac{1}{4}$£®
£¨¢ò£©ÓÉ£¨¢ñ£©µÃ£¬f£¨x£©=$\frac{1}{12}{x}^{3}$+$\frac{1}{4}$x2+$\frac{1}{4}$x£®
¡àh£¨x£©=2lnx+x2+3-2mx£¬
¡àh¡ä£¨x£©=$\frac{2£¨{x}^{2}-mx+1£©}{x}$£®
ÓÉÌâÒâµÃ¡÷=m2-4£¾0£¬x1+x2=m£¬x1x2=1
ÓÖm$¡Ý\frac{3\sqrt{2}}{2}$£¬
¡à½âµÃ0$£¼\frac{{x}_{1}}{{x}_{2}}¡Ü\frac{1}{2}$£®
¡ßx1£¬x2£¨x1£¼x2£©Ç¡Îª¦Õ£¨x£©=lnx-sx2-txµÄÁãµã£¬
¡à´úÈ룬Á½Ê½Ïà¼õµÃ£¬$ln\frac{{x}_{1}}{{x}_{2}}$-s£¨x1-x2£©£¨x1+x2£©-t£¨x1-x2£©=0£®
Ó֦ա䣨x£©=$\frac{1}{x}$-2sx-t£¬´Ó¶øy=£¨x1-x2£©¦Õ¡ä£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©=$\frac{2£¨\frac{{x}_{1}}{{x}_{2}}-1£©}{\frac{{x}_{1}}{{x}_{2}}+1}$-$ln\frac{{x}_{1}}{{x}_{2}}$£®
Éèn=$\frac{{x}_{1}}{{x}_{2}}$£¨0$£¼n¡Ü\frac{1}{2}$£©£¬
Ôòy=£¨x1-x2£©¦Õ¡ä£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©=$\frac{2£¨n-1£©}{n+1}$-lnn£¨0$£¼n¡Ü\frac{1}{2}$£©£¬¼ÇΪM£¨n£©£®
M¡ä£¨n£©=$\frac{-£¨n-1£©^{2}}{n£¨n+1£©^{2}}$£¼0
¡àM£¨n£©ÔÚ£¨0£¬$\frac{1}{2}$]Éϵ¥µ÷µÝ¼õ£®
¡àM£¨n£©min=ln2-$\frac{2}{3}$£®
¹Êy=£¨x1-x2£©¦Õ¡ä£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©µÄ×îСֵΪln2-$\frac{2}{3}$£®

µãÆÀ ±¾Ì⿼²éµ¼Êý֪ʶµÄ×ÛºÏÔËÓ㬿¼²éº¯ÊýµÄÐÔÖÊ£¬¿¼²é¹¹Ô캯Êý·½·¨µÄÔËÓã¬ÄѶȴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖª¦Á£¬¦Â¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬ÇÒÂú×ãsin¦Á=$\frac{\sqrt{10}}{10}$£¬cos¦Â=$\frac{2\sqrt{5}}{5}$£¬Ôò¦Á+¦ÂµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{4}$B£®$\frac{¦Ð}{2}$C£®$\frac{3¦Ð}{4}$D£®$\frac{¦Ð}{4}$»ò$\frac{3¦Ð}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖª¡÷ABCÖУ¬µãA£¨-2£¬0£©£¬B£¨2£¬0£©£¬C£¨x£¬1£©
£¨i£©Èô¡ÏACBÊÇÖ±½Ç£¬Ôòx=$¡À\sqrt{3}$
£¨ii£©Èô¡÷ABCÊÇÈñ½ÇÈý½ÇÐΣ¬ÔòxµÄÈ¡Öµ·¶Î§ÊÇ£¨-2£¬-$\sqrt{3}$£©¡È£¨2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èôtan¦È=$\frac{4}{3}$£¬sin¦È£¼0£¬Ôòcos¦È=-$\frac{3}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®É躯Êýf£¨x£©=cos¦Øx£¨¦Ø£¾0£©£¬½«y=f£¨x£©µÄͼÏóÏòÓÒƽÒÆ$\frac{¦Ð}{4}$¸öµ¥Î»³¤¶Èºó£¬ËùµÃµÄͼÏóÓëԭͼÏóÖغϣ¬Ôò¦ØµÄ×îСֵµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®2C£®8D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Èç¹ûÊäÈëµÄNÊÇ5£¬ÄÇôÊä³öµÄpÊÇ£¨¡¡¡¡£©
A£®120B£®720C£®1440D£®5040

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÏÂÁÐÃüÌâÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
¢Ù$\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow 0$£» ¢Ú$\overrightarrow{BC}+\overrightarrow{AB}=\overrightarrow{AC}$£» ¢Û$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{BC}$£» ¢Ü$0•\overrightarrow{AB}=0$£®
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®$\frac{1}{{2}^{2}-1}$+$\frac{1}{{3}^{2}-1}$+$\frac{1}{{4}^{2}-1}$+¡­+$\frac{1}{£¨n+1£©^{2}-1}$µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{n+1}{2£¨n+2£©}$B£®$\frac{3}{4}$-$\frac{n+1}{2£¨n+2£©}$C£®$\frac{3}{4}$-$\frac{1}{2}$£¨$\frac{1}{n+1}$+$\frac{1}{n+2}$£©D£®$\frac{3}{2}$-$\frac{1}{n+1}$+$\frac{1}{n+2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈçͼÊÇÒ»¸ö¼¸ºÎÌåµÄÕýÊÓͼºÍ¸©ÊÓͼ£®
£¨1£©ÊÔÅжϸü¸ºÎÌåÊÇʲô¼¸ºÎÌ壿£¨²»ÓÃ˵Ã÷ÀíÓÉ£©
£¨2£©ÇëÔÚÕýÊÓͼµÄÕýÓұ߻­³öÆä²àÊÓͼ£¬²¢Çó¸ÃƽÃæͼÐεÄÃæ»ý£»
£¨3£©Çó³ö¸Ã¼¸ºÎÌåµÄÌå»ýÓë±íÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸