(本小题满分12分)
在如图所示的空间几何体中,平面平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在的平分线上。
(1)求证:DE//平面ABC;
(2)求二面角E—BC—A的余弦;
(3)求多面体ABCDE的体积。
(1)略
(2)二面角E—BC—A的余弦值为
(3)多面体DE—ABC的体积为V=V1-V2=
【解析】解:方法一:(1)由题意知, 都是边长为2的等边三角形,取AC中点O,连接BO,DO,则
平面ACD平面ABC
平面ABC,作EF平面ABC,
那么EF//DO,根据题意,点F落在BO上,
,易求得
所以四边形DEFO是平行四边形,DE//OF;
平面ABC,平面ABC,
平面ABC…………4分
(2)作FGBC,垂足为G,连接FG;
平面ABC,根据三垂线定理可知,EGBC
就是二面角E—BC—A的平面角
即二面角E—BC—A的余弦值为…………8分
(3)平面ACD平面ABC,OBAC
平面ACD;又
平面DAC,三棱锥E—DAC的体积
又三棱锥E—ABC的体积
多面体DE—ABC的体积为V=V1-V2=…………12分
方法二:(1)同方法一
(2)建立如图所示的空间直角坐标系,可求得平面ABC的一个法向量为,
平面BCE的一个法向量为,所以
又由图知,所求二面角的平面角是锐角,所以二面角E—BC—A的余弦值为
(3)同方法一
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com