精英家教网 > 高中数学 > 题目详情

【题目】若过点可作曲线的切线恰有两条,则的最小值为__________

【答案】

【解析】

求出f(x)的导数,设切点(x0,f(x0)),求得切线的方程,代入切点,整理化简可得2x03﹣(3+3a)x02+6ax0+b=0(*)由条件切线恰有两条,方程(*)恰有两根.令u(x)=2x3﹣(3+3a)x2+6ax+b,求出导数,求得极值点,令其中一个极值为0,可得3a+b=1,运用乘1法和基本不等式,计算即可得到所求最小值.

f′(x)=3x2﹣6x,

过点P(a,b)作曲线的切线,

设切点(x0,f(x0)),则切线方程为:y﹣b=(3x02﹣6x0)(x﹣a),

将(x0,f(x0))代入得:f(x0)=(3x02﹣6x0)(x0﹣a)+b=x03﹣3x02

2x03﹣(3+3a)x02+6ax0+b=0(*)

由条件切线恰有两条,方程(*)恰有两根.

u(x)=2x3﹣(3+3a)x2+6ax+b,u′(x)=6x2﹣(6+6a)x+6a=6(x﹣a)(x﹣1),

可得u(1)=0u(a)=0,

即有3a+b=1b=a3﹣3a2(舍去),

=(3a+b)()=4++≥4+2=4+2

当且仅当b=a=时,取得等号.

即有的最小值为4+2

故答案为:4+2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校为了解学生假期参与志愿服务活动的情况,随机调查了名男生,名女生,得到他们一周参与志愿服务活动时间的统计数据如右表(单位:人):

超过小时

不超过小时

1)能否有的把握认为该校学生一周参与志愿服务活动时间是否超过小时与性别有关?

(2)以这名学生参与志愿服务活动时间超过小时的频率作为该事件发生的概率,现从该校学生中随机抽查名学生,试估计这名学生中一周参与志愿服务活动时间超过小时的人数.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)

经常网购

偶尔或不用网购

合计

男性

50

100

女性

70

100

合计

(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?

(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;

②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.

参考公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数)的图像在点处的切线方程为.

(1)求实数的值及函数的单调区间;

(2)设函数,证明时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其焦点的距离为5.

1)求的值;

2)设动直线与抛物线相交于两点,问:在轴上是否存在与的取值无关的定点,使得?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若存在最大值,证明:

2)函数,且只有一个极值点,求的取值范围,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x﹣a)2+4.

(1)若f(x)在(﹣∞,+∞)上单调递增,求a的取值范围;

(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

)设是函数的导函数,求函数在区间上的最小值;

)若,函数在区间内有零点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)讨论函数的单调性;

2)若,记函数的两个极值点为(其中),求的最大值.

查看答案和解析>>

同步练习册答案